Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*
Harald Luschgy; Gilles Pagès; Benedikt Wilbertz
ESAIM: Probability and Statistics (2010)
- Volume: 14, page 93-116
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topLuschgy, Harald, Pagès, Gilles, and Wilbertz, Benedikt. "Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*." ESAIM: Probability and Statistics 14 (2010): 93-116. <http://eudml.org/doc/250845>.
@article{Luschgy2010,
abstract = {
We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions.
},
author = {Luschgy, Harald, Pagès, Gilles, Wilbertz, Benedikt},
journal = {ESAIM: Probability and Statistics},
keywords = {Functional quantization; Gaussian process; Brownian motion;
Riemann-Liouville process; optimal quantizer; functional quantization; Gaussian measures in Hilbert spaces; Riemann-Liouville process},
language = {eng},
month = {5},
pages = {93-116},
publisher = {EDP Sciences},
title = {Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*},
url = {http://eudml.org/doc/250845},
volume = {14},
year = {2010},
}
TY - JOUR
AU - Luschgy, Harald
AU - Pagès, Gilles
AU - Wilbertz, Benedikt
TI - Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*
JO - ESAIM: Probability and Statistics
DA - 2010/5//
PB - EDP Sciences
VL - 14
SP - 93
EP - 116
AB -
We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions.
LA - eng
KW - Functional quantization; Gaussian process; Brownian motion;
Riemann-Liouville process; optimal quantizer; functional quantization; Gaussian measures in Hilbert spaces; Riemann-Liouville process
UR - http://eudml.org/doc/250845
ER -
References
top- A. Benveniste, P. Priouret and M. Métivier, Adaptive algorithms and stochastic approximations. Springer-Verlag, New York, Inc. (1990).
- P. Cohort, Limit theorems for random normalized distortion. Ann. Appl. Probab.14 (2004) 118–143.
- S. Dereich, High resolution coding of stochastic processes and small ball probabilities. Ph.D. thesis, TU Berlin (2003).
- A. Gersho and R.M. Gray, Vector Quantization and Signal Compression. Kluwer, Boston (1992).
- S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions. Lect. Notes Math. 1730. Springer, Berlin (2000).
- S. Graf and H. Luschgy, The point density measure in the quantization of self-similar probabilities. Math. Proc. Cambridge Phil. Soc.138 (2005) 513–531.
- R.M. Gray and D.L. Neuhoff, Quantization. IEEE Trans. Inform.44 (1998) 2325–2383.
- H.J. Kushner and G.G. Yin, Stochastic approximation algorithms and applications. First edition, volume 35 of Applications of Mathematics. Springer-Verlag, New York (1997), p. xxii+417.
- B. Lapeyre, G. Pagès and K. Sab, Sequences with low discrepancy. Generalization and application to robbins-monro algorithm. Statistics21 (1990) 251–272.
- H. Luschgy and G. Pagès, Functional quantization of stochastic processes. J. Funct. Anal.196 (2002) 486–531.
- H. Luschgy and G. Pagès, Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab.32 (2004) 1574–1599.
- H. Luschgy and G. Pagès, Sharp asymptotics of the kolmorogov entropy for Gaussian measures. J. Funct. Anal.212 (2004) 89–120.
- M. Mrad and S. Ben Hamida, Optimal quantization: Evolutionary algorithm vs. stochastic gradient, in JCIS (2006).
- G. Pagès, A space vector quantization method for numerical integration. J. Appl. Comput. Math.89 (1997) 1–38.
- G. Pagès, H. Pham and J. Printems, Optimal quantization methods and applications to numerical methods and applications in finance, in Handbook of Computational and Numerical Methods in Finance, S. Rachev (Ed.), Birkhäuser (2004), pp. 253–298.
- G. Pagès and J. Printems, Optimal quadratic quantization for numerics: the Gaussian case. Monte Carlo Meth. Appl.9 (2003) 135–166.
- G. Pagès and J. Printems, Functional quantization for numerics with an application to option pricing. Monte Carlo Meth. Appl.11 (2005) 407–446.
- G. Pagès and J. Printems, www.quantize.maths-fi.com. Website devoted to quantization (2005). maths-fi.com.
- K.T. Vu and R. Gorenflo, Asymptotics of singular values of volterra integral operators. Numer. Funct. Anal. Optimiz.17 (1996) 453–461.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.