Augmented Lagrangian methods for variational inequality problems
Alfredo N. Iusem; Mostafa Nasri
RAIRO - Operations Research (2010)
- Volume: 44, Issue: 1, page 5-25
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.S. Antipin, Equilibrium programming: proximal methods. Comput. Math. Math. Phys.37 (1997) 1285–1296.
- A.S. Antipin, F.P. Vasilev and A.S. Stukalov, A regularized Newton method for solving equilibrium programming problems with an inexactly specified set. Comput. Math. Math. Phys.47 (2007) 19–31.
- A. Auslender and M. Teboulle, Lagrangian duality and related multiplier methods for variational inequality problems. SIAM J. Optim.10 (2000) 1097–1115.
- D.P. Bertsekas, On penalty and multiplier methods for constrained optimization problems. SIAM J. Control Optim.14 (1976) 216–235.
- M. Bianchi and R. Pini, Coercivity conditions for equilibrium problems. J. Optim. Theory Appl.124 (2005) 79–92.
- M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl.90 (1996) 31–43.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems. The Mathematics Student63 (1994) 123–145.
- H. Brezis, L. Nirenberg and S. Stampacchia, A remark on Ky Fan minimax principle. Bolletino della Unione Matematica Italiana6 (1972) 293–300.
- J.D. Buys, Dual algorithms for constrained optimization problems, Ph.D. thesis, University of Leiden, The Netherlands (1972).
- F. Facchinei and J.S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003).
- M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems. SIAM Rev.39 (1997) 669–713.
- S.D. Flåm and A.S. Antipin, Equilibrium programming using proximal-like algorithms. Math. Prog.78 (1997) 29–41.
- F. Flores-Bazán, Existence theorems for generalized noncoercive equilibrium problems: quasiconvex case. SIAM J. Optim.11 (2000) 675–790.
- P.T. Harker and J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Prog.48 (1990) 161–220.
- M.R. Hestenes, Multiplier and gradient methods. J. Optim. Theory Appl.4 (1969) 303–320.
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. Springer, Berlin (1993).
- A.N. Iusem, Augmented Lagrangian methods and proximal point methods for convex optimization. Investigación Operativa8 (1999) 11–49.
- A.N. Iusem and R. Gárciga Otero, Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer. Funct. Anal. Optim.22 (2001) 609–640.
- A.N. Iusem, G. Kassay and W. Sosa, On certain conditions for the existence of solutions of equilibrium problems. Math. Prog.116 (2009) 259–273.
- A.N. Iusem and M. Nasri, Inexact proximal point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim.28 (2007) 1279–1308.
- A.N Iusem and W. Sosa, New existence results for equilibrium problems. Nonlinear Anal.52 (2003) 621–635.
- A.N. Iusem and W. Sosa, Iterative algorithms for equilibrium problems. Optimization52 (2003) 301–316.
- A.N. Iusem and W. Sosa, On the proximal point method for equilibrium problems in Hilbert spaces in appear Optimization.
- I.V. Konnov, Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl.119 (2003) 317–333.
- B.W. Kort and D.P. Bertsekas, Combined primal-dual and penalty methods for convex programming. SIAM J. Control Optim.14 (1976) 268–294.
- M.A. Krasnoselskii, Two observations about the method of succesive approximations. Uspekhi Matematicheskikh Nauk10 (1955) 123–127.
- G. Mastroeni, Gap functions for equilibrium problems. J. Glob. Optim.27 (2003) 411–426.
- J. Moreau, Proximité et dualité dans un espace hilbertien. Bulletin de la Societé Mathématique de France93 (1965).
- A. Moudafi, Proximal point methods extended to equilibrium problems. Journal of Natural Geometry15 (1999) 91–100.
- A. Moudafi, Second-order differential proximal methods for equilibrium problems. Journal of Inequalities in Pure and Applied Mathematics4 (2003) Article no. 18.
- A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, in Ill-posed Variational Problems and Regularization Techniques, Lect. Notes in Economics and Mathematical Systems477, Springer, Berlin (1999) 187–201.
- L.D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal.18 (1992) 1159–1166.
- M. Nasri and W. Sosa, Generalized Nash games and equilibrium problems (submitted).
- M.A. Noor, Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl.122 (2004) 371–386.
- M.A. Noor and T.M. Rassias, On nonconvex equilibrium problems. J. Math. Analysis Appl.212 (2005) 289–299.
- M.J.D. Powell, Method for nonlinear constraints in minimization problems, in Optimization, edited by R. Fletcher, Academic Press, London (1969).
- R.T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Prog.5 (1973) 354–373.
- R.T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl.12 (1973) 555–562.
- R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res.1 (1976) 97–116.
- R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim.14 (1976) 877–898.
- M.V. Solodov and B.F. Svaiter, A hybrid projection-proximal point algorithm. Journal of Convex Analysis6 (1999) 59–70.
- M.V. Solodov and B.F. Svaiter, An inexact hybrid extragardient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis7 (1999) 323–345.