Minimal Subspaces with Maximal Dimensioanal Diameters Минимални попространства с максимални размерностни диаметри

Todorov, Vladimir

Union of Bulgarian Mathematicians (2011)

  • Volume: 40, Issue: 1, page 219-222
  • ISSN: 1313-3330

Abstract

top
Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n. Получени са също така някои следствия.Suppose that X is a compact metric space with dim X = n. Then for the n − 1 dimensional diameter dn−1(X) we have dn−1(X) > 0 and in the same time dn(X) = 0. It follows now that X contains a minimal by inclusion closed subset Y for which dn−1(Y ) = dn−1(X). Under these conditions Y is a Cantor manifold [7]. In this note we prove that every such subspace Y is even a continuum V^n. Various consequences are discussed. *2000 Mathematics Subject Classification: 54H20.

How to cite

top

Todorov, Vladimir. "Minimal Subspaces with Maximal Dimensioanal Diameters Минимални попространства с максимални размерностни диаметри." Union of Bulgarian Mathematicians 40.1 (2011): 219-222. <http://eudml.org/doc/250870>.

@article{Todorov2011,
abstract = {Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n. Получени са също така някои следствия.Suppose that X is a compact metric space with dim X = n. Then for the n − 1 dimensional diameter dn−1(X) we have dn−1(X) > 0 and in the same time dn(X) = 0. It follows now that X contains a minimal by inclusion closed subset Y for which dn−1(Y ) = dn−1(X). Under these conditions Y is a Cantor manifold [7]. In this note we prove that every such subspace Y is even a continuum V^n. Various consequences are discussed. *2000 Mathematics Subject Classification: 54H20.},
author = {Todorov, Vladimir},
journal = {Union of Bulgarian Mathematicians},
keywords = {Cantor Manifold; Dimensional Diameter},
language = {eng},
number = {1},
pages = {219-222},
publisher = {Union of Bulgarian Mathematicians},
title = {Minimal Subspaces with Maximal Dimensioanal Diameters Минимални попространства с максимални размерностни диаметри},
url = {http://eudml.org/doc/250870},
volume = {40},
year = {2011},
}

TY - JOUR
AU - Todorov, Vladimir
TI - Minimal Subspaces with Maximal Dimensioanal Diameters Минимални попространства с максимални размерностни диаметри
JO - Union of Bulgarian Mathematicians
PY - 2011
PB - Union of Bulgarian Mathematicians
VL - 40
IS - 1
SP - 219
EP - 222
AB - Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство Y е даже континуум V^n. Получени са също така някои следствия.Suppose that X is a compact metric space with dim X = n. Then for the n − 1 dimensional diameter dn−1(X) we have dn−1(X) > 0 and in the same time dn(X) = 0. It follows now that X contains a minimal by inclusion closed subset Y for which dn−1(Y ) = dn−1(X). Under these conditions Y is a Cantor manifold [7]. In this note we prove that every such subspace Y is even a continuum V^n. Various consequences are discussed. *2000 Mathematics Subject Classification: 54H20.
LA - eng
KW - Cantor Manifold; Dimensional Diameter
UR - http://eudml.org/doc/250870
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.