Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти

Todorov, Vladimir; Stoev, Petar

Union of Bulgarian Mathematicians (2010)

  • Volume: 39, Issue: 1, page 160-161
  • ISSN: 1313-3330

Abstract

top
Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.The quasi-component Q(x) of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called a true quasi-component. In this note we give a simple construction of (at least) (n − 1)-dimensional totally disconnected subspace Y of a given n-dimensional separable metric space X such that every quasi-component in Y is a single point. *2000 Mathematics Subject Classification: 17C55.

How to cite

top

Todorov, Vladimir, and Stoev, Petar. "Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти." Union of Bulgarian Mathematicians 39.1 (2010): 160-161. <http://eudml.org/doc/250885>.

@article{Todorov2010,
abstract = {Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.The quasi-component Q(x) of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called a true quasi-component. In this note we give a simple construction of (at least) (n − 1)-dimensional totally disconnected subspace Y of a given n-dimensional separable metric space X such that every quasi-component in Y is a single point. *2000 Mathematics Subject Classification: 17C55.},
author = {Todorov, Vladimir, Stoev, Petar},
journal = {Union of Bulgarian Mathematicians},
keywords = {Totally Disconnected N-Dimensional Space},
language = {eng},
number = {1},
pages = {160-161},
publisher = {Union of Bulgarian Mathematicians},
title = {Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти},
url = {http://eudml.org/doc/250885},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Todorov, Vladimir
AU - Stoev, Petar
TI - Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти
JO - Union of Bulgarian Mathematicians
PY - 2010
PB - Union of Bulgarian Mathematicians
VL - 39
IS - 1
SP - 160
EP - 161
AB - Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.The quasi-component Q(x) of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called a true quasi-component. In this note we give a simple construction of (at least) (n − 1)-dimensional totally disconnected subspace Y of a given n-dimensional separable metric space X such that every quasi-component in Y is a single point. *2000 Mathematics Subject Classification: 17C55.
LA - eng
KW - Totally Disconnected N-Dimensional Space
UR - http://eudml.org/doc/250885
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.