A Limit Theorem for Multi-Type Subcritical Age-Dependent Branching Processes with two Types of Immigration Гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта с два типа имиграция

Slavtchova-Bojkova, Maroussia

Union of Bulgarian Mathematicians (2011)

  • Volume: 40, Issue: 1, page 314-319
  • ISSN: 1313-3330

Abstract

top
Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.This work continues the study of the classical subcritical age-dependent branching process and the effect of the following two-type immigration pattern in multidimensional case. At a sequence of renewal epochs a random number of immigrants of different types enters the population. Each subpopulation stemming from one of these immigrants is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period. Individuals from the same type have the same lifetime distribution and produce offspring according to the same reproduction law. This is the p-dimensional Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR). With this paper we complete the study of the one-dimensional case with its multi-type counterpart generalizing the convergence in probability for such processes. *2000 Mathematics Subject Classification: 60J80, 60K10.The research was partially supported by appropriated state funds for research allocated to Sofia University (contract No 112/2010), Bulgaria.

How to cite

top

Slavtchova-Bojkova, Maroussia. "A Limit Theorem for Multi-Type Subcritical Age-Dependent Branching Processes with two Types of Immigration Гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта с два типа имиграция." Union of Bulgarian Mathematicians 40.1 (2011): 314-319. <http://eudml.org/doc/250903>.

@article{Slavtchova2011,
abstract = {Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.This work continues the study of the classical subcritical age-dependent branching process and the effect of the following two-type immigration pattern in multidimensional case. At a sequence of renewal epochs a random number of immigrants of different types enters the population. Each subpopulation stemming from one of these immigrants is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period. Individuals from the same type have the same lifetime distribution and produce offspring according to the same reproduction law. This is the p-dimensional Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR). With this paper we complete the study of the one-dimensional case with its multi-type counterpart generalizing the convergence in probability for such processes. *2000 Mathematics Subject Classification: 60J80, 60K10.The research was partially supported by appropriated state funds for research allocated to Sofia University (contract No 112/2010), Bulgaria.},
author = {Slavtchova-Bojkova, Maroussia},
journal = {Union of Bulgarian Mathematicians},
keywords = {Multi-Dimensional Bellman-Harris Process; Galton-Watson Process; Immigration at Zero; Immigration of Renewal Type; Regenerative Process},
language = {eng},
number = {1},
pages = {314-319},
publisher = {Union of Bulgarian Mathematicians},
title = {A Limit Theorem for Multi-Type Subcritical Age-Dependent Branching Processes with two Types of Immigration Гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта с два типа имиграция},
url = {http://eudml.org/doc/250903},
volume = {40},
year = {2011},
}

TY - JOUR
AU - Slavtchova-Bojkova, Maroussia
TI - A Limit Theorem for Multi-Type Subcritical Age-Dependent Branching Processes with two Types of Immigration Гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта с два типа имиграция
JO - Union of Bulgarian Mathematicians
PY - 2011
PB - Union of Bulgarian Mathematicians
VL - 40
IS - 1
SP - 314
EP - 319
AB - Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.This work continues the study of the classical subcritical age-dependent branching process and the effect of the following two-type immigration pattern in multidimensional case. At a sequence of renewal epochs a random number of immigrants of different types enters the population. Each subpopulation stemming from one of these immigrants is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period. Individuals from the same type have the same lifetime distribution and produce offspring according to the same reproduction law. This is the p-dimensional Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR). With this paper we complete the study of the one-dimensional case with its multi-type counterpart generalizing the convergence in probability for such processes. *2000 Mathematics Subject Classification: 60J80, 60K10.The research was partially supported by appropriated state funds for research allocated to Sofia University (contract No 112/2010), Bulgaria.
LA - eng
KW - Multi-Dimensional Bellman-Harris Process; Galton-Watson Process; Immigration at Zero; Immigration of Renewal Type; Regenerative Process
UR - http://eudml.org/doc/250903
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.