l-stable Functions and Constrained Optimization ℓ-устойчиви функции и условна оптимизация

Ginchev, Ivan

Union of Bulgarian Mathematicians (2010)

  • Volume: 39, Issue: 1, page 129-134
  • ISSN: 1313-3330

Abstract

top
Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].The class of ℓ-stable at a point functions defined in [2] and being larger than the class of C1,1 functions, it is generalized from scalar to vector functions. Some properties of the ℓ-stable vector functions are proved. It is shown that constrained vector optimization problems with ℓ-stable data admit second-order conditions in terms of directional derivatives, which generalizes the results from [2] and [5]. *2000 Mathematics Subject Classification: 90C29, 90C30, 90C46, 49J52.

How to cite

top

Ginchev, Ivan. "l-stable Functions and Constrained Optimization ℓ-устойчиви функции и условна оптимизация." Union of Bulgarian Mathematicians 39.1 (2010): 129-134. <http://eudml.org/doc/250919>.

@article{Ginchev2010,
abstract = {Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].The class of ℓ-stable at a point functions defined in [2] and being larger than the class of C1,1 functions, it is generalized from scalar to vector functions. Some properties of the ℓ-stable vector functions are proved. It is shown that constrained vector optimization problems with ℓ-stable data admit second-order conditions in terms of directional derivatives, which generalizes the results from [2] and [5]. *2000 Mathematics Subject Classification: 90C29, 90C30, 90C46, 49J52.},
author = {Ginchev, Ivan},
journal = {Union of Bulgarian Mathematicians},
keywords = {Vector Optimization; L-stable Functions; Second-order Conditions},
language = {eng},
number = {1},
pages = {129-134},
publisher = {Union of Bulgarian Mathematicians},
title = {l-stable Functions and Constrained Optimization ℓ-устойчиви функции и условна оптимизация},
url = {http://eudml.org/doc/250919},
volume = {39},
year = {2010},
}

TY - JOUR
AU - Ginchev, Ivan
TI - l-stable Functions and Constrained Optimization ℓ-устойчиви функции и условна оптимизация
JO - Union of Bulgarian Mathematicians
PY - 2010
PB - Union of Bulgarian Mathematicians
VL - 39
IS - 1
SP - 129
EP - 134
AB - Иван Гинчев - Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на C1,1 функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].The class of ℓ-stable at a point functions defined in [2] and being larger than the class of C1,1 functions, it is generalized from scalar to vector functions. Some properties of the ℓ-stable vector functions are proved. It is shown that constrained vector optimization problems with ℓ-stable data admit second-order conditions in terms of directional derivatives, which generalizes the results from [2] and [5]. *2000 Mathematics Subject Classification: 90C29, 90C30, 90C46, 49J52.
LA - eng
KW - Vector Optimization; L-stable Functions; Second-order Conditions
UR - http://eudml.org/doc/250919
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.