About Homogeneous Spaces and the Baire Property in Remainders Относно хомогенни пространства и свойството на Бер в прираста
Arhangel’skii, Alexander; Choban, Mitrofan; Mihaylova, Ekaterina
Union of Bulgarian Mathematicians (2012)
- Volume: 41, Issue: 1, page 134-138
- ISSN: 1313-3330
Access Full Article
topAbstract
topHow to cite
topArhangel’skii, Alexander, Choban, Mitrofan, and Mihaylova, Ekaterina. "About Homogeneous Spaces and the Baire Property in Remainders Относно хомогенни пространства и свойството на Бер в прираста." Union of Bulgarian Mathematicians 41.1 (2012): 134-138. <http://eudml.org/doc/250925>.
@article{Arhangel2012,
abstract = {Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство.In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a Gδ - dense Moscow subspace Y. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.Partially supported by a contract of Sofia University of 2012.},
author = {Arhangel’skii, Alexander, Choban, Mitrofan, Mihaylova, Ekaterina},
journal = {Union of Bulgarian Mathematicians},
keywords = {Homogeneous Space; Dissentive Space; Extension; Baire Property; Moscow Space},
language = {eng},
number = {1},
pages = {134-138},
publisher = {Union of Bulgarian Mathematicians},
title = {About Homogeneous Spaces and the Baire Property in Remainders Относно хомогенни пространства и свойството на Бер в прираста},
url = {http://eudml.org/doc/250925},
volume = {41},
year = {2012},
}
TY - JOUR
AU - Arhangel’skii, Alexander
AU - Choban, Mitrofan
AU - Mihaylova, Ekaterina
TI - About Homogeneous Spaces and the Baire Property in Remainders Относно хомогенни пространства и свойството на Бер в прираста
JO - Union of Bulgarian Mathematicians
PY - 2012
PB - Union of Bulgarian Mathematicians
VL - 41
IS - 1
SP - 134
EP - 138
AB - Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство.In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a Gδ - dense Moscow subspace Y. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.Partially supported by a contract of Sofia University of 2012.
LA - eng
KW - Homogeneous Space; Dissentive Space; Extension; Baire Property; Moscow Space
UR - http://eudml.org/doc/250925
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.