About Homogeneous Spaces and Conditions of Completeness of Spaces Относно хомогенни пространства и условия за пълнота
Arhangel’skii, Alexander; Choban, Mitrofan; Mihaylova, Ekaterina
Union of Bulgarian Mathematicians (2012)
- Volume: 41, Issue: 1, page 129-133
- ISSN: 1313-3330
Access Full Article
topAbstract
topHow to cite
topArhangel’skii, Alexander, Choban, Mitrofan, and Mihaylova, Ekaterina. "About Homogeneous Spaces and Conditions of Completeness of Spaces Относно хомогенни пространства и условия за пълнота." Union of Bulgarian Mathematicians 41.1 (2012): 129-133. <http://eudml.org/doc/250955>.
@article{Arhangel2012,
abstract = {Александър В. Архангелски, Митрофан М. Чобан,
Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство,
do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано.In this paper we introduce new notions of o-homogeneous space, lo-homogeneous
space, do-homogeneous space and, co-homogeneous space. If a lo-homogeneous space
X is first-countable at some point, then X is first-countable. If a lo-homogeneous
space X contains a dense extremally disconnected subspace, then X is extremally
disconnected. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.Partially supported by a contract of Sofia University of 2012.},
author = {Arhangel’skii, Alexander, Choban, Mitrofan, Mihaylova, Ekaterina},
journal = {Union of Bulgarian Mathematicians},
keywords = {Homogeneous Space; Open Mapping; Fan-Complete Space},
language = {eng},
number = {1},
pages = {129-133},
publisher = {Union of Bulgarian Mathematicians},
title = {About Homogeneous Spaces and Conditions of Completeness of Spaces Относно хомогенни пространства и условия за пълнота},
url = {http://eudml.org/doc/250955},
volume = {41},
year = {2012},
}
TY - JOUR
AU - Arhangel’skii, Alexander
AU - Choban, Mitrofan
AU - Mihaylova, Ekaterina
TI - About Homogeneous Spaces and Conditions of Completeness of Spaces Относно хомогенни пространства и условия за пълнота
JO - Union of Bulgarian Mathematicians
PY - 2012
PB - Union of Bulgarian Mathematicians
VL - 41
IS - 1
SP - 129
EP - 133
AB - Александър В. Архангелски, Митрофан М. Чобан,
Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство,
do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано.In this paper we introduce new notions of o-homogeneous space, lo-homogeneous
space, do-homogeneous space and, co-homogeneous space. If a lo-homogeneous space
X is first-countable at some point, then X is first-countable. If a lo-homogeneous
space X contains a dense extremally disconnected subspace, then X is extremally
disconnected. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.Partially supported by a contract of Sofia University of 2012.
LA - eng
KW - Homogeneous Space; Open Mapping; Fan-Complete Space
UR - http://eudml.org/doc/250955
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.