Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи
Dimovski, Ivan; Tsankov, Yulian
Union of Bulgarian Mathematicians (2011)
- Volume: 40, Issue: 1, page 169-175
- ISSN: 1313-3330
Access Full Article
topAbstract
topHow to cite
topDimovski, Ivan, and Tsankov, Yulian. "Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи." Union of Bulgarian Mathematicians 40.1 (2011): 169-175. <http://eudml.org/doc/250979>.
@article{Dimovski2011,
abstract = {Иван Христов Димовски, Юлиан Цанков Цанков -
Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова
конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна
конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на
конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain
of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical
Duhamel convolution, the construction uses also two non-classical convolutions for
the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined
into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s
approach, based on convolution fractions, we develop systematically an alternative
approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria.
2. Partially supported by Grant N 132 of NSF of Bulgaria.},
author = {Dimovski, Ivan, Tsankov, Yulian},
journal = {Union of Bulgarian Mathematicians},
keywords = {Duhamel Convolution; Convolution Algebra; Multiplier; Multiplier Fraction; Divisor of Zero; Numerical Operator},
language = {eng},
number = {1},
pages = {169-175},
publisher = {Union of Bulgarian Mathematicians},
title = {Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи},
url = {http://eudml.org/doc/250979},
volume = {40},
year = {2011},
}
TY - JOUR
AU - Dimovski, Ivan
AU - Tsankov, Yulian
TI - Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи
JO - Union of Bulgarian Mathematicians
PY - 2011
PB - Union of Bulgarian Mathematicians
VL - 40
IS - 1
SP - 169
EP - 175
AB - Иван Христов Димовски, Юлиан Цанков Цанков -
Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова
конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна
конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на
конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain
of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical
Duhamel convolution, the construction uses also two non-classical convolutions for
the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined
into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s
approach, based on convolution fractions, we develop systematically an alternative
approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria.
2. Partially supported by Grant N 132 of NSF of Bulgaria.
LA - eng
KW - Duhamel Convolution; Convolution Algebra; Multiplier; Multiplier Fraction; Divisor of Zero; Numerical Operator
UR - http://eudml.org/doc/250979
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.