Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи

Dimovski, Ivan; Tsankov, Yulian

Union of Bulgarian Mathematicians (2011)

  • Volume: 40, Issue: 1, page 169-175
  • ISSN: 1313-3330

Abstract

top
Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical Duhamel convolution, the construction uses also two non-classical convolutions for the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s approach, based on convolution fractions, we develop systematically an alternative approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria. 2. Partially supported by Grant N 132 of NSF of Bulgaria.

How to cite

top

Dimovski, Ivan, and Tsankov, Yulian. "Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи." Union of Bulgarian Mathematicians 40.1 (2011): 169-175. <http://eudml.org/doc/250979>.

@article{Dimovski2011,
abstract = {Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical Duhamel convolution, the construction uses also two non-classical convolutions for the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s approach, based on convolution fractions, we develop systematically an alternative approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria. 2. Partially supported by Grant N 132 of NSF of Bulgaria.},
author = {Dimovski, Ivan, Tsankov, Yulian},
journal = {Union of Bulgarian Mathematicians},
keywords = {Duhamel Convolution; Convolution Algebra; Multiplier; Multiplier Fraction; Divisor of Zero; Numerical Operator},
language = {eng},
number = {1},
pages = {169-175},
publisher = {Union of Bulgarian Mathematicians},
title = {Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи},
url = {http://eudml.org/doc/250979},
volume = {40},
year = {2011},
}

TY - JOUR
AU - Dimovski, Ivan
AU - Tsankov, Yulian
TI - Three-Dimensional Operational Calculi for Nonlocal Evolution Boundary Value Problems Тримерни операционни смятания за нелокални еволюционни гранични задачи
JO - Union of Bulgarian Mathematicians
PY - 2011
PB - Union of Bulgarian Mathematicians
VL - 40
IS - 1
SP - 169
EP - 175
AB - Иван Христов Димовски, Юлиан Цанков Цанков - Построени са директни операционни смятания за функции u(x, y, t), непрекъснати в област от вида D = [0, a] × [0, b] × [0, ∞). Наред с класическата дюамелова конволюция, построението използва и две некласически конволюции за операторите ∂2x и ∂2y. Тези три едномерни конволюции се комбинират в една тримерна конволюция u ∗ v в C(D). Вместо подхода на Я. Микусински, основаващ се на конволюционни частни, се развива алтернативен подход с използване на мултипликаторните частни на конволюционната алгебра (C(D), ∗).Direct algebraic operational calculi for functions u(x, y, t), continuous in a domain of the form D = [0, a] × [0, b] × [0, ∞), are proposed. Along with the classical Duhamel convolution, the construction uses also two non-classical convolutions for the operators ∂2x and ∂2y. These three one-dimensional convolutions are combined into one three-dimensional convolution u ∗ v in C(D). Instead of J. Mikusi´nski’s approach, based on convolution fractions, we develop systematically an alternative approach, based on the multiplier fractions of the convolution algebra (C(D), ∗). *2000 Mathematics Subject Classification: 44A35, 44A45, 35K20, 35K15, 35J25.1. Partially supported by Project D ID 02/25/2009 “Integral Transform Methods, Special Functions and Applications”, by NSF – Ministry of Education, Youth and Science, Bulgaria. 2. Partially supported by Grant N 132 of NSF of Bulgaria.
LA - eng
KW - Duhamel Convolution; Convolution Algebra; Multiplier; Multiplier Fraction; Divisor of Zero; Numerical Operator
UR - http://eudml.org/doc/250979
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.