The Reidemeister-Turaev torsion of standard Spin structures on Seifert fibered 3-manifolds
Yuya Koda[1]
- [1] Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 745-768
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKoda, Yuya. "The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 745-768. <http://eudml.org/doc/250991>.
@article{Koda2012,
abstract = {The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin$^c$ structures. Here, a Spin$^c$ structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin$^c$ structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin$^c$ structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.},
affiliation = {Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan},
author = {Koda, Yuya},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Reidemeister torsion; Reidemeister-Turaev torsion; Seifert 3-manifolds.},
language = {eng},
month = {10},
number = {4},
pages = {745-768},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds},
url = {http://eudml.org/doc/250991},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Koda, Yuya
TI - The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 745
EP - 768
AB - The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin$^c$ structures. Here, a Spin$^c$ structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin$^c$ structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin$^c$ structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.
LA - eng
KW - Reidemeister torsion; Reidemeister-Turaev torsion; Seifert 3-manifolds.
UR - http://eudml.org/doc/250991
ER -
References
top- Amendola (G.), Benedetti (R.), Costantino (F.), Petronio (C.).— Branched spines of -manifolds and torsion of Euler structures. Rend. Ist. Mat. Univ. Trieste 32, p. 1-33 (2001). Zbl1003.57030MR1893390
- Benedetti (R.), Petronio (C.).— Branched Standard Spines of -manifolds (Lecture Notes in Math. 1653). Springer-Verlag, Berlin-Heiderberg-New York (1997). Zbl0873.57002MR1470454
- Benedetti (R.), Petronio (C.).— Reidemeister-Turaev torsion of -dimensional Euler structures with simple boundary tangency and pseudo-Legendrian knots. Manuscripta Math. 106, p. 13-74 (2001). Zbl0991.57013MR1860979
- Floyd (W.), Oertel (U.).— Incompressible surfaces via branched surfaces. Topology 23, p. 117-125 (1984). Zbl0524.57008MR721458
- Fomenko (A.), Matveev (S.).— Algorithmic and Computer Methods for Three-Manifolds (Mathematics and its Applications). Kluwer Academic Publishers, Dordrecht (1997). Zbl0885.57009MR1486574
- Koda (Y.).— Spines, Heegaard splittings and the Reidemeister-Turaev torsion of Euler structure. Tokyo J. Math. 30, p. 417-439 (2007). Zbl1146.57019MR2376519
- Koda (Y.).— A Heegaard-type presentation of branched spines and the Reidemeister-Turaev torsion, Math. Z. 260, p. 203-228 (2008). Zbl1153.57015MR2413351
- Meng (G.), Taubes (C. H.).— Milnor torsion, Math. Res. Lett. 3, p. 137-147 (1996). Zbl0870.57018MR1418579
- Milnor (J. W.).— On the 3-dimensional Brieskorn manifolds , in “Knots, groups and -manifolds: Papers dedicated to the memory of R.H. Fox" (Neuwirth L. P. ed.), Ann. of Math. Stud. 84, Princeton University Press, Princeton, N.J., p. 175-225 (1975). Zbl0305.57003MR418127
- Neumann (W. D.), Raymond (F.).— Seifert manifolds, plumbing, -invariant and orientation reversing maps, in “Algebraic and Geometric Topology: Proceedings of a Symposium held at Santa Barbara in honor of Raymond L. Wilder, July -, " (Millett, K. C. ed.), Lecture Notes in Math. 664, p. 163-196 (1978). Zbl0401.57018MR518415
- Nicolaescu (L. I.).— The Reidemeister Torsion of -Manifolds, de Gruyter Stud. Math. 30, de Gruyter, Berlin (2003). Zbl1024.57002MR1968575
- Oertel (U.).— Incompressible branched surfaces. Invent. Math. 76, p. 385-410 (1984). Zbl0539.57006MR746535
- Reidemeister (K.).— Homotopieringe und Linseräume, Abh. Math. Sem. Univ. Hamburg. 11, p. 102-109 (1935). Zbl0011.32404
- Taniguchi (T.), Tsuboi (K.), Yamashita (M.).— Systematic singular triangulations for all Seifert manifolds. Tokyo J. Math. 28, p. 539-561 (2005). Zbl1101.57001MR2191065
- Turaev (V.).— Euler structure, nonsingular vector flows, and Reidemeister-type torsions. Math. USSR-Izv. 34, p. 627-662 (1990). Zbl0692.57015MR1013714
- Turaev (V.).— Torsion invariants of Spin-structures on -manifolds. Math. Res. Lett. 4, p. 679-695 (1997). Zbl0891.57019MR1484699
- Turaev (V.).— A combinatorial formulation for the Seiberg-Witten invariants of -manifolds. Math. Res. Lett. 5, p. 583-598 (1998). Zbl1002.57036MR1666856
- Turaev (V.).— Introduction to combinatorial torsions (Lectures in Math. ETH Zürich). Birkhäuser Verlag, Basel-Boston-Berlin (2001). Zbl0970.57001MR1809561
- Turaev (V.).— Torsions of -dimensional Manifolds (Progress in Math. 208). Birkhäuser Verlag, Basel-Boston-Berlin (2002). Zbl1012.57002MR1958479
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.