The Reidemeister-Turaev torsion of standard Spin c structures on Seifert fibered 3-manifolds

Yuya Koda[1]

  • [1] Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 4, page 745-768
  • ISSN: 0240-2963

Abstract

top
The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin c structures. Here, a Spin c structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin c structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin c structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.

How to cite

top

Koda, Yuya. "The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 745-768. <http://eudml.org/doc/250991>.

@article{Koda2012,
abstract = {The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin$^c$ structures. Here, a Spin$^c$ structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin$^c$ structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin$^c$ structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.},
affiliation = {Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan},
author = {Koda, Yuya},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Reidemeister torsion; Reidemeister-Turaev torsion; Seifert 3-manifolds.},
language = {eng},
month = {10},
number = {4},
pages = {745-768},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds},
url = {http://eudml.org/doc/250991},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Koda, Yuya
TI - The Reidemeister-Turaev torsion of standard Spin$^c$ structures on Seifert fibered 3-manifolds
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 745
EP - 768
AB - The Reidemeister-Turaev torsion is an invariant of 3-manifolds equipped with Spin$^c$ structures. Here, a Spin$^c$ structure of a 3-manifold is a homology class of non-singular vector fields on it. Each Seifert fibered 3-manifold has a standard Spin$^c$ structure, which is represented as a non-singular vector field the set of whose orbits give a Seifert fibration. We provide an algorithm for computing the Reidemeister-Turaev torsion of the standard Spin$^c$ structure on a Seifert fibered 3-manifold. The machinery used to compute the torsion is that of punctured Heegaard diagrams.
LA - eng
KW - Reidemeister torsion; Reidemeister-Turaev torsion; Seifert 3-manifolds.
UR - http://eudml.org/doc/250991
ER -

References

top
  1. Amendola (G.), Benedetti (R.), Costantino (F.), Petronio (C.).— Branched spines of 3 -manifolds and torsion of Euler structures. Rend. Ist. Mat. Univ. Trieste 32, p. 1-33 (2001). Zbl1003.57030MR1893390
  2. Benedetti (R.), Petronio (C.).— Branched Standard Spines of 3 -manifolds (Lecture Notes in Math. 1653). Springer-Verlag, Berlin-Heiderberg-New York (1997). Zbl0873.57002MR1470454
  3. Benedetti (R.), Petronio (C.).— Reidemeister-Turaev torsion of 3 -dimensional Euler structures with simple boundary tangency and pseudo-Legendrian knots. Manuscripta Math. 106, p. 13-74 (2001). Zbl0991.57013MR1860979
  4. Floyd (W.), Oertel (U.).— Incompressible surfaces via branched surfaces. Topology 23, p. 117-125 (1984). Zbl0524.57008MR721458
  5. Fomenko (A.), Matveev (S.).— Algorithmic and Computer Methods for Three-Manifolds (Mathematics and its Applications). Kluwer Academic Publishers, Dordrecht (1997). Zbl0885.57009MR1486574
  6. Koda (Y.).— Spines, Heegaard splittings and the Reidemeister-Turaev torsion of Euler structure. Tokyo J. Math. 30, p. 417-439 (2007). Zbl1146.57019MR2376519
  7. Koda (Y.).— A Heegaard-type presentation of branched spines and the Reidemeister-Turaev torsion, Math. Z. 260, p. 203-228 (2008). Zbl1153.57015MR2413351
  8. Meng (G.), Taubes (C. H.).— S W ̲ = Milnor torsion, Math. Res. Lett. 3, p. 137-147 (1996). Zbl0870.57018MR1418579
  9. Milnor (J. W.).— On the 3-dimensional Brieskorn manifolds M ( p , q , r ) , in “Knots, groups and 3 -manifolds: Papers dedicated to the memory of R.H. Fox" (Neuwirth L. P. ed.), Ann. of Math. Stud. 84, Princeton University Press, Princeton, N.J., p. 175-225 (1975). Zbl0305.57003MR418127
  10. Neumann (W. D.), Raymond (F.).— Seifert manifolds, plumbing, μ -invariant and orientation reversing maps, in “Algebraic and Geometric Topology: Proceedings of a Symposium held at Santa Barbara in honor of Raymond L. Wilder, July 25 - 29 , 1977 " (Millett, K. C. ed.), Lecture Notes in Math. 664, p. 163-196 (1978). Zbl0401.57018MR518415
  11. Nicolaescu (L. I.).— The Reidemeister Torsion of 3 -Manifolds, de Gruyter Stud. Math. 30, de Gruyter, Berlin (2003). Zbl1024.57002MR1968575
  12. Oertel (U.).— Incompressible branched surfaces. Invent. Math. 76, p. 385-410 (1984). Zbl0539.57006MR746535
  13. Reidemeister (K.).— Homotopieringe und Linseräume, Abh. Math. Sem. Univ. Hamburg. 11, p. 102-109 (1935). Zbl0011.32404
  14. Taniguchi (T.), Tsuboi (K.), Yamashita (M.).— Systematic singular triangulations for all Seifert manifolds. Tokyo J. Math. 28, p. 539-561 (2005). Zbl1101.57001MR2191065
  15. Turaev (V.).— Euler structure, nonsingular vector flows, and Reidemeister-type torsions. Math. USSR-Izv. 34, p. 627-662 (1990). Zbl0692.57015MR1013714
  16. Turaev (V.).— Torsion invariants of Spin c -structures on 3 -manifolds. Math. Res. Lett. 4, p. 679-695 (1997). Zbl0891.57019MR1484699
  17. Turaev (V.).— A combinatorial formulation for the Seiberg-Witten invariants of 3 -manifolds. Math. Res. Lett. 5, p. 583-598 (1998). Zbl1002.57036MR1666856
  18. Turaev (V.).— Introduction to combinatorial torsions (Lectures in Math. ETH Zürich). Birkhäuser Verlag, Basel-Boston-Berlin (2001). Zbl0970.57001MR1809561
  19. Turaev (V.).— Torsions of 3 -dimensional Manifolds (Progress in Math. 208). Birkhäuser Verlag, Basel-Boston-Berlin (2002). Zbl1012.57002MR1958479

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.