Logarithmic Poisson cohomology: example of calculation and application to prequantization

Joseph Dongho[1]

  • [1] Université de Maroua, Ecole Normale Supérieure, Département de Mathématiques, BP 55 Maroua au Cameroun

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 4, page 623-650
  • ISSN: 0240-2963

Abstract

top
In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmic derivation of the module of logarithmic Kähler differentials. Therefore it induces a differential complex from which we derive the notion of logarithmic Poisson cohomology. We prove that Poisson cohomology and logarithmic Poisson cohomology are equal when the Poisson structure is log symplectic. We give an example of non log symplectic but logarithmic Poisson structure for which these cohomology spaces are equal. We give an example for which these cohomologies are different. We discuss and modify the K. Saito definition of logarithmic differential forms. This note ends with an application to a prequantization of the logarithmic Poisson algebra: ( [ x , y ] , { x , y } = x ) .

How to cite

top

Dongho, Joseph. "Logarithmic Poisson cohomology: example of calculation and application to prequantization." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 623-650. <http://eudml.org/doc/251001>.

@article{Dongho2012,
abstract = {In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmic derivation of the module of logarithmic Kähler differentials. Therefore it induces a differential complex from which we derive the notion of logarithmic Poisson cohomology. We prove that Poisson cohomology and logarithmic Poisson cohomology are equal when the Poisson structure is log symplectic. We give an example of non log symplectic but logarithmic Poisson structure for which these cohomology spaces are equal. We give an example for which these cohomologies are different. We discuss and modify the K. Saito definition of logarithmic differential forms. This note ends with an application to a prequantization of the logarithmic Poisson algebra: $(\{\mathbb\{C\}\}[x,y],\lbrace x,y\rbrace =x).$},
affiliation = {Université de Maroua, Ecole Normale Supérieure, Département de Mathématiques, BP 55 Maroua au Cameroun},
author = {Dongho, Joseph},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Poisson geometry; cohomology; logarithmic Poisson structures; prequantization},
language = {eng},
month = {10},
number = {4},
pages = {623-650},
publisher = {Université Paul Sabatier, Toulouse},
title = {Logarithmic Poisson cohomology: example of calculation and application to prequantization},
url = {http://eudml.org/doc/251001},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Dongho, Joseph
TI - Logarithmic Poisson cohomology: example of calculation and application to prequantization
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 623
EP - 650
AB - In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmic derivation of the module of logarithmic Kähler differentials. Therefore it induces a differential complex from which we derive the notion of logarithmic Poisson cohomology. We prove that Poisson cohomology and logarithmic Poisson cohomology are equal when the Poisson structure is log symplectic. We give an example of non log symplectic but logarithmic Poisson structure for which these cohomology spaces are equal. We give an example for which these cohomologies are different. We discuss and modify the K. Saito definition of logarithmic differential forms. This note ends with an application to a prequantization of the logarithmic Poisson algebra: $({\mathbb{C}}[x,y],\lbrace x,y\rbrace =x).$
LA - eng
KW - Poisson geometry; cohomology; logarithmic Poisson structures; prequantization
UR - http://eudml.org/doc/251001
ER -

References

top
  1. Alekseevsky (D.), Michor (P.), Ruppert (W.).— Extensions of Lie Algebras. Erwin Schrödinger Institut fut Mathematische Physik Boltzmanngasse, 9, A-1090 Wien, Austria. 
  2. Braconnier (J.).— Algèbres de Poisson, C. R. Acad. Sci. Paris Sér. A-B 284, no. 21, A1345-A1348 (1977). Zbl0356.17007MR443000
  3. Chevalley (C.) and Eilenberg (S.).— Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63, p. 85-124 (1948). Zbl0031.24803MR24908
  4. Deligne (P.).— Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics. Berlin. Heidelberg. New York. Zbl0244.14004
  5. Goto (R.).— Rozansky-Witten Invariants of log symplectic Manifolds, Contemporary Mathematics, volume 309, p. 69-84 (2002). Zbl1043.53039MR1953353
  6. Hochschild (G.), Kostant (B.) and Rosenberg (A.).— Differential Forms On Regular Affine Algebras, Trans. Amer. Math. Soc. 102, p. 383-408 (1962). Zbl0102.27701MR142598
  7. Huebschmann (J.).— Poisson Cohomology and quantization, J.Reine Angew. Math. 408 p. 57-113 (1990). Zbl0699.53037MR1058984
  8. Krasilshchik (I.).— Hamiltonian cohomology of canonical algebras, (Russian), Dokl. Akad. Nauk SSSR 251, no.6, p. 1306-1309 (1980). Zbl0454.58020MR570152
  9. Lichnerowicz (A.).— Les variétés de Poisson et leurs algèbres de Lie associées. (French) J. Differential Geometry 12, no. 2., p. 253-300 (1977). Zbl0405.53024MR501133
  10. Lie (S.).— Theorie der Transformations gruppen (Zweiter Abschnitt, unter Mitwirkung von Prof. Dr. Friederich Engel). Teubner, Leipzig (1890). 
  11. Palais (R.).— The cohomology of Lie ring, Proc. Symp. Pure Math. 3. p. 130-137 (1961). Zbl0126.03404MR125867
  12. Rinehart (G.).— Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Vol. 108, no.2, p. 195-222 (1963). Zbl0113.26204MR154906
  13. Saito (K.).— Theory of logarithmic differential forms and logarithmic vector fields, Sec. IA, J.Fac.Sci. Univ. Tokyo. 27 p. 265-291 (1980). Zbl0496.32007MR586450
  14. Vaisman (I.).— On the geometric quantization of Poisson manifolds, J. Math. Phys 32, p. 3339-3345 (1991). Zbl0749.58023MR1137387
  15. Vinogradov (A.), Krasilshchik (I.).— What is Hamiltonian formalism?, (Russian), Uspehi Mat. Nauk, Vol. 30, no.1, p. 1059-1062 (1975). Zbl0327.70006MR650307
  16. Weinstein (A.).— The local structure of Poisson manifolds, J. Differential Geometry 18, p. 523-557 (1983). Zbl0524.58011MR723816
  17. Woodhouse (N.M.J.).— Geometric quantization, Oxford Mathematiccal Monograph, Claredon Press. Oxford, Second edition (1992). Zbl0747.58004MR1183739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.