Logarithmic Poisson cohomology: example of calculation and application to prequantization
- [1] Université de Maroua, Ecole Normale Supérieure, Département de Mathématiques, BP 55 Maroua au Cameroun
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 623-650
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Alekseevsky (D.), Michor (P.), Ruppert (W.).— Extensions of Lie Algebras. Erwin Schrödinger Institut fut Mathematische Physik Boltzmanngasse, 9, A-1090 Wien, Austria.
- Braconnier (J.).— Algèbres de Poisson, C. R. Acad. Sci. Paris Sér. A-B 284, no. 21, A1345-A1348 (1977). Zbl0356.17007MR443000
- Chevalley (C.) and Eilenberg (S.).— Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63, p. 85-124 (1948). Zbl0031.24803MR24908
- Deligne (P.).— Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics. Berlin. Heidelberg. New York. Zbl0244.14004
- Goto (R.).— Rozansky-Witten Invariants of log symplectic Manifolds, Contemporary Mathematics, volume 309, p. 69-84 (2002). Zbl1043.53039MR1953353
- Hochschild (G.), Kostant (B.) and Rosenberg (A.).— Differential Forms On Regular Affine Algebras, Trans. Amer. Math. Soc. 102, p. 383-408 (1962). Zbl0102.27701MR142598
- Huebschmann (J.).— Poisson Cohomology and quantization, J.Reine Angew. Math. 408 p. 57-113 (1990). Zbl0699.53037MR1058984
- Krasilshchik (I.).— Hamiltonian cohomology of canonical algebras, (Russian), Dokl. Akad. Nauk SSSR 251, no.6, p. 1306-1309 (1980). Zbl0454.58020MR570152
- Lichnerowicz (A.).— Les variétés de Poisson et leurs algèbres de Lie associées. (French) J. Differential Geometry 12, no. 2., p. 253-300 (1977). Zbl0405.53024MR501133
- Lie (S.).— Theorie der Transformations gruppen (Zweiter Abschnitt, unter Mitwirkung von Prof. Dr. Friederich Engel). Teubner, Leipzig (1890).
- Palais (R.).— The cohomology of Lie ring, Proc. Symp. Pure Math. 3. p. 130-137 (1961). Zbl0126.03404MR125867
- Rinehart (G.).— Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Vol. 108, no.2, p. 195-222 (1963). Zbl0113.26204MR154906
- Saito (K.).— Theory of logarithmic differential forms and logarithmic vector fields, Sec. IA, J.Fac.Sci. Univ. Tokyo. 27 p. 265-291 (1980). Zbl0496.32007MR586450
- Vaisman (I.).— On the geometric quantization of Poisson manifolds, J. Math. Phys 32, p. 3339-3345 (1991). Zbl0749.58023MR1137387
- Vinogradov (A.), Krasilshchik (I.).— What is Hamiltonian formalism?, (Russian), Uspehi Mat. Nauk, Vol. 30, no.1, p. 1059-1062 (1975). Zbl0327.70006MR650307
- Weinstein (A.).— The local structure of Poisson manifolds, J. Differential Geometry 18, p. 523-557 (1983). Zbl0524.58011MR723816
- Woodhouse (N.M.J.).— Geometric quantization, Oxford Mathematiccal Monograph, Claredon Press. Oxford, Second edition (1992). Zbl0747.58004MR1183739