Non-axiomatizability of real spectra in λ

Timothy Mellor[1]; Marcus Tressl[2]

  • [1] Universität Regensburg, NWF I - Mathematik, D-93040 Regensburg, Germany
  • [2] The University of Manchester, School of Mathematics, Oxford Road, Manchester M13 9PL, UK

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 2, page 343-358
  • ISSN: 0240-2963

Abstract

top
We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language λ of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.

How to cite

top

Mellor, Timothy, and Tressl, Marcus. "Non-axiomatizability of real spectra in $\mathcal{L}_\infty \lambda $." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 343-358. <http://eudml.org/doc/251003>.

@article{Mellor2012,
abstract = {We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language $\mathcal\{L\}_\infty \lambda $ of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.},
affiliation = {Universität Regensburg, NWF I - Mathematik, D-93040 Regensburg, Germany; The University of Manchester, School of Mathematics, Oxford Road, Manchester M13 9PL, UK},
author = {Mellor, Timothy, Tressl, Marcus},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral space; real spectrum; commutative ring; infinitary first-order language},
language = {eng},
month = {4},
number = {2},
pages = {343-358},
publisher = {Université Paul Sabatier, Toulouse},
title = {Non-axiomatizability of real spectra in $\mathcal\{L\}_\infty \lambda $},
url = {http://eudml.org/doc/251003},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Mellor, Timothy
AU - Tressl, Marcus
TI - Non-axiomatizability of real spectra in $\mathcal{L}_\infty \lambda $
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 343
EP - 358
AB - We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language $\mathcal{L}_\infty \lambda $ of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.
LA - eng
KW - spectral space; real spectrum; commutative ring; infinitary first-order language
UR - http://eudml.org/doc/251003
ER -

References

top
  1. Bochnak (J.), Coste (M.), Roy (M.-F.).— Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer (1998). Zbl0912.14023MR1659509
  2. Carral (M.), Coste (M.).— Normal spectral spaces and their dimensions,J. Pure Appl. Algebra 30, no. 3, p. 227-235 (1983). Zbl0525.14015MR724034
  3. Delzell (C.), Madden (J.).— A completely normal spectral space that is not a real spectrum, Journal of Algebra 169, p. 71-77 (1994). Zbl0833.14030MR1296582
  4. Dickmann (M.).— Larger Infinitary Languages. Ch. IX of ’Model Theoretic Logics’ (J. Barwise, S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, Berlin (1985). Zbl0324.02010MR819540
  5. Dickmann (M.), Gluschankof (D.), Lucas (F.).— The order structure of the real spectrum of commutative rings, J. Algebra 229, no. 1, p. 175-204 (2000). Zbl0962.13024MR1765778
  6. Hochster (M.).— Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, p. 43-60 (1969). Zbl0184.29401MR251026
  7. Hodges (W.).— Model Theory, Encyclopedia of mathematics and its applications, vol. 42 (1993). Zbl0789.03031MR1221741
  8. Johnstone (P.T.).— Stone Spaces, Reprint of the 1982 edition. Cambridge Studies in Advanced Mathematics, 3. Cambridge University Press, Cambridge. xxii+370 pp. (1986) Zbl0499.54001MR861951
  9. Kaplansky (I.).— Commutative RingsRevised edition. The University of Chicago Press, Chicago, Ill.-London, ix+182 pp. (1974) Zbl0296.13001MR345945
  10. Priestley (H.A.).— Representation of distributive lattices by means of ordered stone spaces Bull. London Math. Soc. 2, p. 186-190 1970. Zbl0201.01802MR265242
  11. Priestley (H.A.).— Spectral Sets, J. Pure Appl. Algebra 94, no. 1, p. 101-114 (1994). Zbl0807.06001MR1277526
  12. Schwartz (N.).— The basic theory of real closed spacesMem. Am. Math. Soc., vol 397 (1989). Zbl0697.14015MR953224
  13. Schwartz (N.), Madden (J. J.).— Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings, Lecture Notes in Mathematics 1712. Zbl0967.14038MR1719673
  14. Stone (M.H.).— Topological representations of distributive lattices and Brouwerian logics, Casopis, Mat. Fys., Praha, 67, p. 1-25 (1937). Zbl0018.00303
  15. Schwartz (N.), Tressl (M.).— Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra, vol. 323, no. 3, p. 698-728 (2010). Zbl1198.13023MR2574858

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.