Non-axiomatizability of real spectra in
Timothy Mellor[1]; Marcus Tressl[2]
- [1] Universität Regensburg, NWF I - Mathematik, D-93040 Regensburg, Germany
- [2] The University of Manchester, School of Mathematics, Oxford Road, Manchester M13 9PL, UK
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 2, page 343-358
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMellor, Timothy, and Tressl, Marcus. "Non-axiomatizability of real spectra in $\mathcal{L}_\infty \lambda $." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 343-358. <http://eudml.org/doc/251003>.
@article{Mellor2012,
abstract = {We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language $\mathcal\{L\}_\infty \lambda $ of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.},
affiliation = {Universität Regensburg, NWF I - Mathematik, D-93040 Regensburg, Germany; The University of Manchester, School of Mathematics, Oxford Road, Manchester M13 9PL, UK},
author = {Mellor, Timothy, Tressl, Marcus},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {spectral space; real spectrum; commutative ring; infinitary first-order language},
language = {eng},
month = {4},
number = {2},
pages = {343-358},
publisher = {Université Paul Sabatier, Toulouse},
title = {Non-axiomatizability of real spectra in $\mathcal\{L\}_\infty \lambda $},
url = {http://eudml.org/doc/251003},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Mellor, Timothy
AU - Tressl, Marcus
TI - Non-axiomatizability of real spectra in $\mathcal{L}_\infty \lambda $
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 343
EP - 358
AB - We show that the property of a spectral space, to be a spectral subspace of the real spectrum of a commutative ring, is not expressible in the infinitary first order language $\mathcal{L}_\infty \lambda $ of its defining lattice. This generalises a result of Delzell and Madden which says that not every completely normal spectral space is a real spectrum.
LA - eng
KW - spectral space; real spectrum; commutative ring; infinitary first-order language
UR - http://eudml.org/doc/251003
ER -
References
top- Bochnak (J.), Coste (M.), Roy (M.-F.).— Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer (1998). Zbl0912.14023MR1659509
- Carral (M.), Coste (M.).— Normal spectral spaces and their dimensions,J. Pure Appl. Algebra 30, no. 3, p. 227-235 (1983). Zbl0525.14015MR724034
- Delzell (C.), Madden (J.).— A completely normal spectral space that is not a real spectrum, Journal of Algebra 169, p. 71-77 (1994). Zbl0833.14030MR1296582
- Dickmann (M.).— Larger Infinitary Languages. Ch. IX of ’Model Theoretic Logics’ (J. Barwise, S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, Berlin (1985). Zbl0324.02010MR819540
- Dickmann (M.), Gluschankof (D.), Lucas (F.).— The order structure of the real spectrum of commutative rings, J. Algebra 229, no. 1, p. 175-204 (2000). Zbl0962.13024MR1765778
- Hochster (M.).— Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142, p. 43-60 (1969). Zbl0184.29401MR251026
- Hodges (W.).— Model Theory, Encyclopedia of mathematics and its applications, vol. 42 (1993). Zbl0789.03031MR1221741
- Johnstone (P.T.).— Stone Spaces, Reprint of the 1982 edition. Cambridge Studies in Advanced Mathematics, 3. Cambridge University Press, Cambridge. xxii+370 pp. (1986) Zbl0499.54001MR861951
- Kaplansky (I.).— Commutative RingsRevised edition. The University of Chicago Press, Chicago, Ill.-London, ix+182 pp. (1974) Zbl0296.13001MR345945
- Priestley (H.A.).— Representation of distributive lattices by means of ordered stone spaces Bull. London Math. Soc. 2, p. 186-190 1970. Zbl0201.01802MR265242
- Priestley (H.A.).— Spectral Sets, J. Pure Appl. Algebra 94, no. 1, p. 101-114 (1994). Zbl0807.06001MR1277526
- Schwartz (N.).— The basic theory of real closed spacesMem. Am. Math. Soc., vol 397 (1989). Zbl0697.14015MR953224
- Schwartz (N.), Madden (J. J.).— Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings, Lecture Notes in Mathematics 1712. Zbl0967.14038MR1719673
- Stone (M.H.).— Topological representations of distributive lattices and Brouwerian logics, Casopis, Mat. Fys., Praha, 67, p. 1-25 (1937). Zbl0018.00303
- Schwartz (N.), Tressl (M.).— Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra, vol. 323, no. 3, p. 698-728 (2010). Zbl1198.13023MR2574858
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.