Twisted matings and equipotential gluings
Xavier Buff[1]; Adam L. Epstein[2]; Sarah Koch[3]
- [1] Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
- [2] Mathematics institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- [3] Department of Mathematics, Science Center, 1 Oxford Street, Harvard University, Cambridge MA 02138, United States
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: S5, page 995-1031
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBuff, Xavier, Epstein, Adam L., and Koch, Sarah. "Twisted matings and equipotential gluings." Annales de la faculté des sciences de Toulouse Mathématiques 21.S5 (2012): 995-1031. <http://eudml.org/doc/251004>.
@article{Buff2012,
abstract = {One crucial tool for studying postcritically finite rational maps is Thurston’s topological characterization of rational maps. This theorem is proved by iterating a holomorphic endomorphism on a certain Teichmüller space. The graph of this endomorphism covers a correspondence on the level of moduli space. In favorable cases, this correspondence is the graph of a map, which can be used to study matings. We illustrate this by way of example: we study the mating of the basilica with itself.},
affiliation = {Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France; Mathematics institute, University of Warwick, Coventry CV4 7AL, United Kingdom; Department of Mathematics, Science Center, 1 Oxford Street, Harvard University, Cambridge MA 02138, United States},
author = {Buff, Xavier, Epstein, Adam L., Koch, Sarah},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {12},
number = {S5},
pages = {995-1031},
publisher = {Université Paul Sabatier, Toulouse},
title = {Twisted matings and equipotential gluings},
url = {http://eudml.org/doc/251004},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Buff, Xavier
AU - Epstein, Adam L.
AU - Koch, Sarah
TI - Twisted matings and equipotential gluings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/12//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - S5
SP - 995
EP - 1031
AB - One crucial tool for studying postcritically finite rational maps is Thurston’s topological characterization of rational maps. This theorem is proved by iterating a holomorphic endomorphism on a certain Teichmüller space. The graph of this endomorphism covers a correspondence on the level of moduli space. In favorable cases, this correspondence is the graph of a map, which can be used to study matings. We illustrate this by way of example: we study the mating of the basilica with itself.
LA - eng
UR - http://eudml.org/doc/251004
ER -
References
top- Buff (X.), Epstein (A.), Koch (S.) Pilgrim (K.).— On Thurston’s Pullback Map Complex Dynamics, Families and Friends, D. Schleicher, AK Peters (2009). Zbl1180.37065MR2508269
- Bartholdi (L.) & Nekrashevych (V.).— Thurston equivalence of topological polynomials, Acta Math. 197/1, p. 1-51 (2006). Zbl1176.37020MR2285317
- Douady (A.), Hubbard (J.H.).— A proof of Thurston’s topological characterization of rational functions, Acta Math., Dec. (1993). Zbl0806.30027MR1251582
- Hubbard (J. H.).— Teichmüller theory, volume I, Matrix Editions (2006). MR2245223
- Hubbard (J. H.).— Teichmüller theory, volume II, Matrix Editions, to appear. Zbl06594695MR2245223
- Hubbard (J. H.) & Koch (S.).— An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, submitted. Zbl1318.32019
- Keel (S.).— Intersection theory of moduli space of stable -pointed curves of genus zero, Trans AMS. 330/2, p. 545-574 (1992). Zbl0768.14002MR1034665
- Kirwan (F. C.).— Desingularizations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122, no. 1, p. 41-85 (1985). Zbl0592.14011MR799252
- Knudsen (F.) & Mumford (D.).— The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “Div”, Math. Scand. 39, p. 19-55 (1976). Zbl0343.14008MR437541
- Knudsen (F.).— The projectivity of the moduli space of stable curves II: The stacks , Math. Scand. 52, p. 161-199 (1983). Zbl0544.14020MR702953
- Koch (S.).— Teichmüller theory and critically finite endomorphisms, submitted. Zbl1310.32016
- Milnor (J.).— Pasting together Julia sets: a worked example of mating, Experimen. Math. 13, p. 55-92 (2004). Zbl1115.37051MR2065568
- Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168, p. 11-87 (1992). Zbl0774.58035MR1149864
- Selinger (N.).— Thurston’s pullback map on the augmented Teichmüller space and applications, To appear in Inventiones mathematicae. Zbl1298.37033
- Shishikura (M.) & Lei (T.).— On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lect. Note 274, Ed. Tan Lei, Cambridge Univ. Press, p. 289-305 (2000). Zbl1062.37039MR1765095
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.