Bourgain’s discretization theorem
Ohad Giladi[1]; Assaf Naor[2]; Gideon Schechtman[3]
- [1] Institut de Mathématiques de Jussieu, Université Paris VI
- [2] Courant Institute, New York University
- [3] Department of Mathematics, Weizmann Institute of Science
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 817-837
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGiladi, Ohad, Naor, Assaf, and Schechtman, Gideon. "Bourgain’s discretization theorem." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 817-837. <http://eudml.org/doc/251005>.
@article{Giladi2012,
abstract = {Bourgain’s discretization theorem asserts that there exists a universal constant $C\in (0,\infty )$ with the following property. Let $X,Y$ be Banach spaces with $\dim X=n$. Fix $D\in (1,\infty )$ and set $\delta = e^\{-n^\{Cn\}\}$. Assume that $\mathcal\{N\}$ is a $\delta $-net in the unit ball of $X$ and that $\mathcal\{N\}$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $D$. Then the entire space $X$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $CD$. This mostly expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.We also obtain an improvement of Bourgain’s theorem in the important case when $Y=L_p$ for some $p\in [1,\infty )$: in this case it suffices to take $\delta = C^\{-1\}n^\{-5/2\}$ for the same conclusion to hold true. The case $p=1$ of this improved discretization result has the following consequence. For arbitrarily large $n\in \mathbb\{N\}$ there exists a family $\mathcal\{Y\}$ of $n$-point subsets of $\lbrace 1,\ldots ,n\rbrace ^2\subseteq \mathbb\{R\}^2$ such that if we write $|\mathcal\{Y\}|= N$ then any $L_1$ embedding of $\mathcal\{Y\}$ , equipped with the Earthmover metric (a.k.a. transportation cost metric or minimumum weight matching metric) incurs distortion at least a constant multiple of $\sqrt\{\log \log N\}$; the previously best known lower bound for this problem was a constant multiple of $\sqrt\{\log \log \log N\}$.},
affiliation = {Institut de Mathématiques de Jussieu, Université Paris VI; Courant Institute, New York University; Department of Mathematics, Weizmann Institute of Science},
author = {Giladi, Ohad, Naor, Assaf, Schechtman, Gideon},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {nets; local structure of Banach spaces; bi-Lipschitz embeddings; minimum cost matching metric},
language = {eng},
month = {10},
number = {4},
pages = {817-837},
publisher = {Université Paul Sabatier, Toulouse},
title = {Bourgain’s discretization theorem},
url = {http://eudml.org/doc/251005},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Giladi, Ohad
AU - Naor, Assaf
AU - Schechtman, Gideon
TI - Bourgain’s discretization theorem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 817
EP - 837
AB - Bourgain’s discretization theorem asserts that there exists a universal constant $C\in (0,\infty )$ with the following property. Let $X,Y$ be Banach spaces with $\dim X=n$. Fix $D\in (1,\infty )$ and set $\delta = e^{-n^{Cn}}$. Assume that $\mathcal{N}$ is a $\delta $-net in the unit ball of $X$ and that $\mathcal{N}$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $D$. Then the entire space $X$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $CD$. This mostly expository article is devoted to a detailed presentation of a proof of Bourgain’s theorem.We also obtain an improvement of Bourgain’s theorem in the important case when $Y=L_p$ for some $p\in [1,\infty )$: in this case it suffices to take $\delta = C^{-1}n^{-5/2}$ for the same conclusion to hold true. The case $p=1$ of this improved discretization result has the following consequence. For arbitrarily large $n\in \mathbb{N}$ there exists a family $\mathcal{Y}$ of $n$-point subsets of $\lbrace 1,\ldots ,n\rbrace ^2\subseteq \mathbb{R}^2$ such that if we write $|\mathcal{Y}|= N$ then any $L_1$ embedding of $\mathcal{Y}$ , equipped with the Earthmover metric (a.k.a. transportation cost metric or minimumum weight matching metric) incurs distortion at least a constant multiple of $\sqrt{\log \log N}$; the previously best known lower bound for this problem was a constant multiple of $\sqrt{\log \log \log N}$.
LA - eng
KW - nets; local structure of Banach spaces; bi-Lipschitz embeddings; minimum cost matching metric
UR - http://eudml.org/doc/251005
ER -
References
top- Albiac (F.) and Kalton (N. J.).— Topics in Banach space theory, volume 233 of Graduate Texts in Mathematics. Springer, New York (2006). Zbl1094.46002MR2192298
- Austin (T.), Naor (A.), and Tessera (R.).— Sharp quantitative nonembeddability of the Heisenberg group into superre exive Banach spaces. Preprint available at http://arxiv.org/abs/1007.4238. To appear in Groups Geom. Dyn. (2010).
- Ball (K.).— An elementary introduction to modern convex geometry. In Flavors of geometry, volume 31 of Math. Sci. Res. Inst. Publ., pages 158. Cambridge Univ. Press, Cambridge (1997). Zbl0901.52002MR1491097
- Begun (B.).— A remark on almost extensions of Lipschitz functions. Israel J. Math., 109, p. 151-155 (1999). Zbl0944.46038MR1679594
- Benyamini (Y.) and Lindenstrauss (J.).— Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2000). Zbl0946.46002MR1727673
- Bourgain (J.).— The metrical interpretation of superre exivity in Banach spaces. Israel J. Math., 56(2), p. 222-230 (1986). Zbl0643.46013MR880292
- Bourgain (J.).— Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In Geometrical aspects of functional analysis (1985/86), volume 1267 of Lecture Notes in Math., p. 157-167. Springer, Berlin (1987). Zbl0633.46018MR907692
- Cheeger (J.) and Kleiner (B.).— Differentiating maps into , and the geometry of BV functions. Ann. of Math. (2), 171(2), p. 1347-1385 (2010). Zbl1194.22009MR2630066
- Cheeger (J.), Kleiner (B.), and Naor (A.).— Compression bounds for Lipschitz maps from the Heisenberg group to . Acta Math., 207(2), p. 291-373 (2011). Zbl1247.46020MR2892612
- Corson (H.) and Klee (V.).— Topological classification of convex sets. In Proc. Sympos. Pure Math., Vol. VII, p. 37-51. Amer. Math. Soc., Providence, R.I. (1963). Zbl0207.42901MR161119
- Deza (M. M.) and Laurent (M.).— Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin (1997). Zbl0885.52001MR1460488
- Dvoretzky (A.).— Some results on convex bodies and Banach spaces. In Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), p. 123-160. Jerusalem Academic Press, Jerusalem (1961). Zbl0119.31803MR139079
- Heinrich (S.).— Ultraproducts in Banach space theory. J. Reine Angew. Math., 313, p. 72-104 (1980). Zbl0412.46017MR552464
- Heinrich (S.) and Mankiewicz (P.).— Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math., 73(3), p. 225-251 (1982). Zbl0506.46008MR675426
- Hytönen (T.), Li (S.), and Naor (A.).— Quantitative affine approximation for UMD targets. Preprint (2011). MR2807530
- John (F.).— Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, p. 187-204. Interscience Publishers Inc. (1948). Zbl0034.10503MR30135
- Johnson (W. B.), Maurey (B.), and Schechtman (G.).— Non-linear factorization of linear operators. Bull. Lond. Math. Soc., 41(4), p. 663-668 (2009). Zbl1183.46021MR2521361
- Li (S.) and Naor (A.).— Discretization and affine approximation in high dimensions. Preprint available at http://arxiv.org/abs/1202.2567, to appear in Israel J. Math. (2011).
- Lindenstrauss (J.) and Rosenthal (H. P.).— The spaces. Israel J. Math., 7, p. 325-349 (1969). Zbl0205.12602MR270119
- Naor (A.) and Schechtman (G.).— Planar earthmover is not in . SIAM J. Comput., 37(3), p. 804-826 (electronic) (2007). Zbl1155.46005MR2341917
- Pansu (P.).— Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), 129(1), p. 1-60 (1989). Zbl0678.53042MR979599
- Ribe (M.).— On uniformly homeomorphic normed spaces. Ark. Mat., 14(2), p. 237-244 (197)6. Zbl0336.46018MR440340
- Torchinsky (A.).— Real-variable methods in harmonic analysis, volume 123 of Pure and Applied Mathematics. Academic Press Inc., Orlando, FL (1986). Zbl0621.42001MR869816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.