A classification of bicritical rational maps with a pair of period two superattracting cycles
Adam Epstein[1]; Thomas Sharland[2]
- [1] University of Warwick, Coventry, CV4 7AL, UK
- [2] State University of New York at Stony Brook, Stony Brook, New York, USA
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: S5, page 907-934
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Douady (A.) and Hubbard (J. H.).— A proof of Thurston’s topological characterization of rational functions, Acta. Math. 171, p. 263-297 (1993). Zbl0806.30027MR1251582
- Gantmacher (F. R.).— The Theory of Matrices, Chelsea (1959). Zbl0927.15001
- Milnor (J.).— Periodic orbits, external rays and the Mandelbrot set: An expository account, Astérisque 261, p. 277-333 (2000). Zbl0941.30016MR1755445
- Milnor (J.).— Pasting together Julia sets: A worked out example of mating, Experimental Math. 13, p. 55-92 (2004). Zbl1115.37051MR2065568
- Milnor (J.).— Dynamics in One Complex Variable, 3rd ed., Princeton University Press (2006). Zbl1085.30002MR2193309
- Schleicher (D.).— On fibers and local connectivity of Mandelbrot and multibrot sets, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Amer. Math. Soc., p. 477-517 (2004). Zbl1074.30025MR2112117
- Seneta (E.).— Nonnegative Matrices and Markov Chains, 3rd ed., Springer (1981). Zbl1099.60004MR719544
- Sharland (T.).— Rational maps with clustering and the mating of polynomials, Ph.D. thesis, University of Warwick, 2011, Can be found at http://wrap.warwick.ac.uk/35776/.
- Sharland (T.).— Constructing rational maps with cluster points using the mating operation, J. Lond. Math. Soc., to appear (2012).
- Sharland (T.).— Thurston equivalence for rational maps with clusters, Ergodic Th. Dyn. Sys., to appear (2012).
- Shishikura (M.) and Lei (T.).— A family of cubic rational maps and matings of cubic polynomials, Experimental Math. 9, p. 29-53 (2000). Zbl0969.37020MR1758798
- Tan (Lei).— Accouplements des polynomes complexes, Ph. D. thesis, Université de Paris-Sud, Orsay (1987). Zbl0596.58043
- Tan (Lei).— Matings of quadratic polynomials, Ergodic Th. Dyn. Sys. 12, p. Zbl0756.58024MR1182664