An algebraic formulation of Thurston’s characterization of rational functions
- [1] Dept. of Mathematics, Indiana University, Bloomington, IN, 47405 USA
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: S5, page 1033-1068
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topPilgrim, Kevin M.. "An algebraic formulation of Thurston’s characterization of rational functions." Annales de la faculté des sciences de Toulouse Mathématiques 21.S5 (2012): 1033-1068. <http://eudml.org/doc/251019>.
@article{Pilgrim2012,
abstract = {Following Douady-Hubbard and Bartholdi-Nekrashevych, we give an algebraic formulation of Thurston’s characterization of rational functions. The techniques developed are applied to the analysis of the dynamics on the set of free homotopy classes of simple closed curves induced by a rational function. The resulting finiteness results yield new information on the global dynamics of the pullback map on Teichmüller space used in the proof of the characterization theorem.},
affiliation = {Dept. of Mathematics, Indiana University, Bloomington, IN, 47405 USA},
author = {Pilgrim, Kevin M.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Thurston map; multicurve; obstruction; rational map; skinning map; mapping class group; virtual endomorphism},
language = {eng},
month = {12},
number = {S5},
pages = {1033-1068},
publisher = {Université Paul Sabatier, Toulouse},
title = {An algebraic formulation of Thurston’s characterization of rational functions},
url = {http://eudml.org/doc/251019},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Pilgrim, Kevin M.
TI - An algebraic formulation of Thurston’s characterization of rational functions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/12//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - S5
SP - 1033
EP - 1068
AB - Following Douady-Hubbard and Bartholdi-Nekrashevych, we give an algebraic formulation of Thurston’s characterization of rational functions. The techniques developed are applied to the analysis of the dynamics on the set of free homotopy classes of simple closed curves induced by a rational function. The resulting finiteness results yield new information on the global dynamics of the pullback map on Teichmüller space used in the proof of the characterization theorem.
LA - eng
KW - Thurston map; multicurve; obstruction; rational map; skinning map; mapping class group; virtual endomorphism
UR - http://eudml.org/doc/251019
ER -
References
top- Buff (X.), Epstein (A.), Koch (S.), and Pilgrim (K. M.).— On Thurston’s pullback map. Complex dynamics, p. 561-583, A K Peters, Wellesley, MA (2009). Zbl1180.37065MR2508269
- Bartholdi (L.) and Nekrashevych (V.).— Thurston equivalence of topological polynomials. Acta Math.197, p. 1-51 (2006). Zbl1176.37020MR2285317
- Bonk (M.) and Meyer (D.).— Expanding Thurston maps. arXiv:1009.3647v1 (2010).
- Brock (J.) and Margalit (D.).— Weil-Petersson isometries via the pants complex. Proc. Amer. Math. Soc. 1353, p. 795-803 (2007). Zbl1110.32004MR2262875
- Douady (A.) and Hubbard (J.).— A Proof of Thurston’s Topological Characterization of Rational Functions. Acta. Math.171, p. 263-297 (1993). Zbl0806.30027MR1251582
- Dym (H.).— Linear algebra in action, volume 78 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2007). Zbl1113.15001MR2289254
- Farb (B.) and Margalit (D.).— A primer on mapping class groups. Princeton University Press, Princeton, NJ. xiv+472 pp. ISBN: 978-0-691-14794-9 (2012). Zbl1245.57002MR2850125
- Kelsey (G.).— Mapping schemes realizable by obstructed topological polynomials, Conformal Geometry and Dynamics (electronic) 16, p. 44-80 (2012). Zbl1278.37043MR2893472
- Kent (R.).— Skinning maps. Duke Math. J.1512, p. 279-336 (2010). Zbl1193.30062MR2598379
- Koch (S.).— A new link between Teichmüller theory and complex dynamics. PhD thesis, Cornell University (2008). http://www.math.harvard.edu/~kochs/papers.html.
- Lodge (R.).— The boundary values of Thurston’s pullback map. PhD thesis, Indiana University (2012). http://mypage.iu.edu/~rlodge/LodgeThesisFinal.pdf.
- Milnor (J.) and Thurston (W.).— On iterated maps of the interval. Springer Lecture Notes in Mathematics 1342 (1988). Zbl0664.58015MR970571
- Nekrashevych (V.).— Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2005). Zbl1087.20032MR2162164
- Nekrashevych (V.).— Combinatorics of polynomial iterations. Complex dynamics, 169-214, A K Peters, Wellesley, MA (2009). Zbl1201.37078MR2508257
- Nielsen (J.).— Abbildungsklassen endlicher Ordnung. Acta Math.75, p. 23-115 (1943). Zbl0027.26601MR13306
- Pilgrim (K. M.).— Combinations of complex dynamical systems. Springer Lecture Notes in Mathematics 1827 (2003). Zbl1045.37028MR2020454
- Selinger (N.).— Thurston’s pullback map on the augmented Teichmüller space and applications, Inventiones Mathematicae 189, No. 1, p. 111-142 (2012). Zbl1298.37033MR2929084
- Thurston (W. P.).— On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.)19, p. 417-431 (1988). Zbl0674.57008MR956596
- Wolpert (S.).— The Weil-Petersson metric geometry. Handbook of Teichmüller theory, vol. II. IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich (2009). Zbl1169.30020MR2497791
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.