Spectral approach for kernel-based interpolation
Bertrand Gauthier[1]; Xavier Bay[2]
- [1] Université Jean-Monnet de Saint-Étienne ICJ, URM 5208, PRES univ. de Lyon
- [2] École des Mines de Saint-Étienne Institut Fayol
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 3, page 439-479
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGauthier, Bertrand, and Bay, Xavier. "Spectral approach for kernel-based interpolation." Annales de la faculté des sciences de Toulouse Mathématiques 21.3 (2012): 439-479. <http://eudml.org/doc/251022>.
@article{Gauthier2012,
abstract = {We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.},
affiliation = {Université Jean-Monnet de Saint-Étienne ICJ, URM 5208, PRES univ. de Lyon; École des Mines de Saint-Étienne Institut Fayol},
author = {Gauthier, Bertrand, Bay, Xavier},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {3},
pages = {439-479},
publisher = {Université Paul Sabatier, Toulouse},
title = {Spectral approach for kernel-based interpolation},
url = {http://eudml.org/doc/251022},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Gauthier, Bertrand
AU - Bay, Xavier
TI - Spectral approach for kernel-based interpolation
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 3
SP - 439
EP - 479
AB - We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.
LA - eng
UR - http://eudml.org/doc/251022
ER -
References
top- Aronszajn (N.).— Theory of reproducing kernels, Trans. Amer. Math. Soc., 63, p. 337-404 (1950). Zbl0037.20701MR51437
- Atteia (M.).— Hilbertian kernels and spline functions. North-holland, (1992). Zbl0767.41015MR1205348
- Baxendale (P.).— Gaussian measures on function spaces, American Journal of Mathematics, 98(4), p. 891-952 (1976). Zbl0384.28011MR467809
- Bourbaki (N.).— Eléments de mathematique: Chapitre 6, Intégration vectorielle, Hermann (1959). Zbl0030.29002
- Berlinet (A.) and Thomas-Agnan (C.).— Reproducing kernel Hilbert spaces in probability and statistics, Springer Netherlands (2004). Zbl1145.62002MR2239907
- Cucker (F.) and Smale (S.).— On the mathematical foundations of learning, Bulletin (new series) of the American Mathematical Society, 39(1), p. 1-49 (2002). Zbl0983.68162MR1864085
- Dudley (R. M.), Feldman (J.), and Le Cam (L.).— On Seminorms and Probabilities, and Abstract Wiener Spaces, Annals of Mathematics, 93(2), p. 390-408 (1971). Zbl0193.44603MR279272
- Dudley (R. M.).— Sample functions of the Gaussian process, Springer (2010). Zbl0261.60033MR2742203
- Fortet (R. M.).— Les opérateurs intégraux dont le noyau est une covariance, Trabajos de Estadç´tica y de Investigación Operativa, 36, p. 133-144 (1985). Zbl0733.47030
- Gauthier (B.).— Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle, PhD thesis, Ecole des Mines de Saint-Etienne (2011).
- Gross (L.).— Abstract Wiener spaces, Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., 2, p. 31-42 (1967). Zbl0187.40903MR212152
- Niyogi (P.), Minh (H. Q.) and Yao (Y.).— Learning Theory, chapter Mercer’s Theorem, Feature Maps and Smoothing, pages 154-168. Springer Berlin/Heidelberg (2006). Zbl1143.68554MR2280604
- Janson (S.).— Gaussian Hilbert Spaces, Cambridge University Press (1997). Zbl1143.60005MR1474726
- Kuelbs (J.).— Expansions of vectors in a Banach space related to Gaussian measures, Proceedings of the American Mathematical Society, 27(2), p. 364-370 (1971). Zbl0226.60060MR267615
- Nashed (M.Z.) and Wahba (G.).— Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations, SIAM J. Math. Anal, 5(6), p. 974-987 (1974). Zbl0287.47009MR358405
- Parzen (E.).— Extraction and detection problems and reproducing kernel hilbert spaces, J. Soc. Ind. Appl. Math., Ser. A, Control, 1, p. 35-62 (1962). Zbl0199.21904MR143314
- R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2008).
- Rajput (B.S.).— On Gaussian measures in certain locally convex spaces, Journal of Multivariate Analysis, 2(3), p. 282-306 (1972). Zbl0241.60005MR345156
- W Rudin (W.).— Analyse fonctionnelle, Ediscience International (1995).
- Rasmussen (C. E.) and Williams (C. K. I.).— Gaussian Processes for Machine Learning, The MIT Press (2006). Zbl1177.68165MR2514435
- Schwartz (L.).— Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés, J. Anal. Math., 13, p. 115-256 (1964). Zbl0124.06504MR179587
- Schwartz (L.).— Analyse Hilbertienne, Hermann (1979). Zbl0414.46017MR552779
- Stein (M.L.).— Interpolation of Spatial Data: some theory for kriging, Springer Verlag (1999). Zbl0924.62100MR1697409
- Talagrand (M.).— Mesures gaussiennes sur un espace localement convexe, Probability Theory and Related Fields, 64(2), p. 181-209 (1983). Zbl0498.60009MR714143
- Tarieladze (V.) and Vakhania (N.).— Disintegration of Gaussian measures and average-case optimal algorithms, Journal of Complexity, 23(4-6), p. 851-866 (2007). Zbl1131.41010MR2371996
- Wahba (G.).— Spline Models for Observational Data, SIAM (1990). Zbl0813.62001MR1045442
- Walsh (J. B.).— A note on uniform convergence of stochastic processes, in Proc. Amer. Math. Soc, volume 18, p. 129-132 (1967). Zbl0314.60025MR203792
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.