Spectral approach for kernel-based interpolation

Bertrand Gauthier[1]; Xavier Bay[2]

  • [1] Université Jean-Monnet de Saint-Étienne ICJ, URM 5208, PRES univ. de Lyon
  • [2] École des Mines de Saint-Étienne Institut Fayol

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 3, page 439-479
  • ISSN: 0240-2963

Abstract

top
We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.

How to cite

top

Gauthier, Bertrand, and Bay, Xavier. "Spectral approach for kernel-based interpolation." Annales de la faculté des sciences de Toulouse Mathématiques 21.3 (2012): 439-479. <http://eudml.org/doc/251022>.

@article{Gauthier2012,
abstract = {We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.},
affiliation = {Université Jean-Monnet de Saint-Étienne ICJ, URM 5208, PRES univ. de Lyon; École des Mines de Saint-Étienne Institut Fayol},
author = {Gauthier, Bertrand, Bay, Xavier},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {3},
pages = {439-479},
publisher = {Université Paul Sabatier, Toulouse},
title = {Spectral approach for kernel-based interpolation},
url = {http://eudml.org/doc/251022},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Gauthier, Bertrand
AU - Bay, Xavier
TI - Spectral approach for kernel-based interpolation
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 3
SP - 439
EP - 479
AB - We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based interpolation models and in what it offers an interesting alternative for dimension reduction.
LA - eng
UR - http://eudml.org/doc/251022
ER -

References

top
  1. Aronszajn (N.).— Theory of reproducing kernels, Trans. Amer. Math. Soc., 63, p. 337-404 (1950). Zbl0037.20701MR51437
  2. Atteia (M.).— Hilbertian kernels and spline functions. North-holland, (1992). Zbl0767.41015MR1205348
  3. Baxendale (P.).— Gaussian measures on function spaces, American Journal of Mathematics, 98(4), p. 891-952 (1976). Zbl0384.28011MR467809
  4. Bourbaki (N.).— Eléments de mathematique: Chapitre 6, Intégration vectorielle, Hermann (1959). Zbl0030.29002
  5. Berlinet (A.) and Thomas-Agnan (C.).— Reproducing kernel Hilbert spaces in probability and statistics, Springer Netherlands (2004). Zbl1145.62002MR2239907
  6. Cucker (F.) and Smale (S.).— On the mathematical foundations of learning, Bulletin (new series) of the American Mathematical Society, 39(1), p. 1-49 (2002). Zbl0983.68162MR1864085
  7. Dudley (R. M.), Feldman (J.), and Le Cam (L.).— On Seminorms and Probabilities, and Abstract Wiener Spaces, Annals of Mathematics, 93(2), p. 390-408 (1971). Zbl0193.44603MR279272
  8. Dudley (R. M.).— Sample functions of the Gaussian process, Springer (2010). Zbl0261.60033MR2742203
  9. Fortet (R. M.).— Les opérateurs intégraux dont le noyau est une covariance, Trabajos de Estad痴tica y de Investigación Operativa, 36, p. 133-144 (1985). Zbl0733.47030
  10. Gauthier (B.).— Approche spectrale pour l’interpolation à noyaux et positivité conditionnelle, PhD thesis, Ecole des Mines de Saint-Etienne (2011). 
  11. Gross (L.).— Abstract Wiener spaces, Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., 2, p. 31-42 (1967). Zbl0187.40903MR212152
  12. Niyogi (P.), Minh (H. Q.) and Yao (Y.).— Learning Theory, chapter Mercer’s Theorem, Feature Maps and Smoothing, pages 154-168. Springer Berlin/Heidelberg (2006). Zbl1143.68554MR2280604
  13. Janson (S.).— Gaussian Hilbert Spaces, Cambridge University Press (1997). Zbl1143.60005MR1474726
  14. Kuelbs (J.).— Expansions of vectors in a Banach space related to Gaussian measures, Proceedings of the American Mathematical Society, 27(2), p. 364-370 (1971). Zbl0226.60060MR267615
  15. Nashed (M.Z.) and Wahba (G.).— Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations, SIAM J. Math. Anal, 5(6), p. 974-987 (1974). Zbl0287.47009MR358405
  16. Parzen (E.).— Extraction and detection problems and reproducing kernel hilbert spaces, J. Soc. Ind. Appl. Math., Ser. A, Control, 1, p. 35-62 (1962). Zbl0199.21904MR143314
  17. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2008). 
  18. Rajput (B.S.).— On Gaussian measures in certain locally convex spaces, Journal of Multivariate Analysis, 2(3), p. 282-306 (1972). Zbl0241.60005MR345156
  19. W Rudin (W.).— Analyse fonctionnelle, Ediscience International (1995). 
  20. Rasmussen (C. E.) and Williams (C. K. I.).— Gaussian Processes for Machine Learning, The MIT Press (2006). Zbl1177.68165MR2514435
  21. Schwartz (L.).— Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés, J. Anal. Math., 13, p. 115-256 (1964). Zbl0124.06504MR179587
  22. Schwartz (L.).— Analyse Hilbertienne, Hermann (1979). Zbl0414.46017MR552779
  23. Stein (M.L.).— Interpolation of Spatial Data: some theory for kriging, Springer Verlag (1999). Zbl0924.62100MR1697409
  24. Talagrand (M.).— Mesures gaussiennes sur un espace localement convexe, Probability Theory and Related Fields, 64(2), p. 181-209 (1983). Zbl0498.60009MR714143
  25. Tarieladze (V.) and Vakhania (N.).— Disintegration of Gaussian measures and average-case optimal algorithms, Journal of Complexity, 23(4-6), p. 851-866 (2007). Zbl1131.41010MR2371996
  26. Wahba (G.).— Spline Models for Observational Data, SIAM (1990). Zbl0813.62001MR1045442
  27. Walsh (J. B.).— A note on uniform convergence of stochastic processes, in Proc. Amer. Math. Soc, volume 18, p. 129-132 (1967). Zbl0314.60025MR203792

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.