Captures, matings and regluings

Inna Mashanova[1]; Vladlen Timorin[2]

  • [1] Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics, 7 Vavilova St 117312 Moscow, Russia Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043 USA
  • [2] Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: S5, page 877-906
  • ISSN: 0240-2963

Abstract

top
In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.

How to cite

top

Mashanova, Inna, and Timorin, Vladlen. "Captures, matings and regluings." Annales de la faculté des sciences de Toulouse Mathématiques 21.S5 (2012): 877-906. <http://eudml.org/doc/251023>.

@article{Mashanova2012,
abstract = {In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.},
affiliation = {Faculty of Mathematics and Laboratory of Algebraic Geometry, National Research University Higher School of Economics, 7 Vavilova St 117312 Moscow, Russia Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043 USA; Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11, 119002 Moscow, Russia},
author = {Mashanova, Inna, Timorin, Vladlen},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {12},
number = {S5},
pages = {877-906},
publisher = {Université Paul Sabatier, Toulouse},
title = {Captures, matings and regluings},
url = {http://eudml.org/doc/251023},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Mashanova, Inna
AU - Timorin, Vladlen
TI - Captures, matings and regluings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/12//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - S5
SP - 877
EP - 906
AB - In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.
LA - eng
UR - http://eudml.org/doc/251023
ER -

References

top
  1. Aspenberg (M.), Yampolsky (M.).— “Mating non-renormalizable quadratic polynomials”, Commun. Math. Phys., 287, p. 1-40 (2009). Zbl1187.37065MR2480740
  2. Douady (A.) and Hubbard (J.).— “A proof of Thurston’s topological characterization of rational functions”, Acta Math. 171, p. 263-297 (1993). Zbl0806.30027MR1251582
  3. McMullen (C.).— “Automorphisms of rational maps”, In “Holomorphic Functions and Moduli I”, p. 31-60, Springer, (1988). Zbl0692.30035MR955807
  4. Moore (R.L.).— “On the foundations of plane analysis situs”, Transactions of the AMS, 17, p. 131-164 (1916). MR1501033
  5. Moore (R.L.).— “Concerning upper-semicontinuous collections of continua”, Transactions of the AMS, 27, Vol. 4, p. 416-428 (1925). Zbl51.0464.03MR1501320
  6. Mañe (R.), Sud (P.), Sullivan (D.).— “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4) 16, no. 2, p. 193-217 (1983). Zbl0524.58025MR732343
  7. Milnor (J.).— “Geometry and Dynamics of Quadratic Rational Maps” Experimental Math. 2 p. 37-83 (1993). Zbl0922.58062MR1246482
  8. Milnor (J.).— “Periodic orbits, externals rays and the Mandelbrot set: an expository account”. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque No. 261, p. 277-333 (2000). Zbl0941.30016MR1755445
  9. Milnor (J.).— “Local connectivity of Julia sets: expository lectures”, in “The Mandelbrot set, Theme and Variations,” LMS Lecture Note Series 274, Cambr. U. Press, p. 67-116 (2000). Zbl1107.37305MR1765085
  10. Pilgrim (K.).— “Rational maps whose Fatou components are Jordan domains”, Ergodic Theory and Dynamical Systems, 16, p. 1323-1343 (1996). Zbl0894.30017MR1424402
  11. Rees (M.).— “Components of degree two hyperbolic rational maps” Invent. Math. 100, p. 357-382 (1990). Zbl0712.30022MR1047139
  12. Rees (M.).— “A partial description of the Parameter Space of Rational Maps of Degree Two: Part 1” Acta Math. 168, 11-87 (1992). Zbl0774.58035MR1149864
  13. Rees (M.).— “A Fundamental Domain for V 3 ”, Mém. Soc. Math. Fr. (N.S.) No. 121 (2010). Zbl1222.30001MR2768577
  14. Sullivan (D.).— “ Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains”. Ann. of Math. (2) 122, No. 3, p. 401-418 (1985). Zbl0589.30022MR819553
  15. Tan (L.).— “Matings of quadratic polynomials”, Erg. Th. and Dyn. Sys. 12 p. 589-620 (1992). Zbl0756.58024MR1182664
  16. Thurston (W.).— “Geometry and dynamics of rational functions”, in “Complex dynamics: families and friends”, D. Schleicher (Ed.) (2009) MR2508255
  17. Timorin (V.).— “Topological regluing of rational functions”, Inventiones Math., 179, Issue 3, p. 461-506 (2009). Zbl1211.37058MR2587338
  18. Wittner (B.).— “On the bifurcation loci of rational maps of degree two”, PhD Thesis, Cornell University (1988). MR2636558

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.