An invariant for difference field extensions
Zoé Chatzidakis[1]; Ehud Hrushovski[2]
- [1] Université Paris Diderot Paris 7 – IMJ UFR de Mathématiques case 7012, site Chevaleret – 75205 Paris Cedex 13, France
- [2] Institute of Mathematics – Hebrew University (Giv’at Ram) – Jerusalem 91904, Israel.
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 2, page 217-234
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topChatzidakis, Zoé, and Hrushovski, Ehud. "An invariant for difference field extensions." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 217-234. <http://eudml.org/doc/251025>.
@article{Chatzidakis2012,
abstract = {In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.},
affiliation = {Université Paris Diderot Paris 7 – IMJ UFR de Mathématiques case 7012, site Chevaleret – 75205 Paris Cedex 13, France; Institute of Mathematics – Hebrew University (Giv’at Ram) – Jerusalem 91904, Israel.},
author = {Chatzidakis, Zoé, Hrushovski, Ehud},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Difference field; distant degree; limit degree; difference subgroup},
language = {eng},
month = {4},
number = {2},
pages = {217-234},
publisher = {Université Paul Sabatier, Toulouse},
title = {An invariant for difference field extensions},
url = {http://eudml.org/doc/251025},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Chatzidakis, Zoé
AU - Hrushovski, Ehud
TI - An invariant for difference field extensions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 217
EP - 234
AB - In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.
LA - eng
KW - Difference field; distant degree; limit degree; difference subgroup
UR - http://eudml.org/doc/251025
ER -
References
top- Cohn (R.M.).— Difference algebra, Tracts in Mathematics 17, Interscience Pub. (1965). Zbl0127.26402MR205987
- Ivanov (A.A.).— The problem of finite axiomatizability for strongly minimal theories of graphs (Russian), Algebra i Logika 28 (1989), no. 3, p. 280-297, 366; translation in Algebra and Logic 28 (1989), no. 3, p. 183-194 (1990). Zbl0727.05028MR1066316
- Möller (R.G.).— Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad. J. Math. 54, no. 4, p. 795-827 (2002). Zbl1007.22010MR1913920
- Pillay (A.).— Geometric stability theory, Oxford Science Publications, Oxford. Univ. Press, New York (1996). Zbl0871.03023MR1429864
- Willis (G.).— The structure of totally disconnected locally compact groups, Math. Ann. 300, p. 341-363 (1994). Zbl0811.22004MR1299067
- Willis (G.).— Further properties of the scale function on a totally disconnected group, J. of Algebra 237, p. 142-164 (2001). Zbl0982.22001MR1813900
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.