An invariant for difference field extensions

Zoé Chatzidakis[1]; Ehud Hrushovski[2]

  • [1] Université Paris Diderot Paris 7 – IMJ UFR de Mathématiques case 7012, site Chevaleret – 75205 Paris Cedex 13, France
  • [2] Institute of Mathematics – Hebrew University (Giv’at Ram) – Jerusalem 91904, Israel.

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 2, page 217-234
  • ISSN: 0240-2963

Abstract

top
In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.

How to cite

top

Chatzidakis, Zoé, and Hrushovski, Ehud. "An invariant for difference field extensions." Annales de la faculté des sciences de Toulouse Mathématiques 21.2 (2012): 217-234. <http://eudml.org/doc/251025>.

@article{Chatzidakis2012,
abstract = {In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.},
affiliation = {Université Paris Diderot Paris 7 – IMJ UFR de Mathématiques case 7012, site Chevaleret – 75205 Paris Cedex 13, France; Institute of Mathematics – Hebrew University (Giv’at Ram) – Jerusalem 91904, Israel.},
author = {Chatzidakis, Zoé, Hrushovski, Ehud},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Difference field; distant degree; limit degree; difference subgroup},
language = {eng},
month = {4},
number = {2},
pages = {217-234},
publisher = {Université Paul Sabatier, Toulouse},
title = {An invariant for difference field extensions},
url = {http://eudml.org/doc/251025},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Chatzidakis, Zoé
AU - Hrushovski, Ehud
TI - An invariant for difference field extensions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/4//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 2
SP - 217
EP - 234
AB - In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.
LA - eng
KW - Difference field; distant degree; limit degree; difference subgroup
UR - http://eudml.org/doc/251025
ER -

References

top
  1. Cohn (R.M.).— Difference algebra, Tracts in Mathematics 17, Interscience Pub. (1965). Zbl0127.26402MR205987
  2. Ivanov (A.A.).— The problem of finite axiomatizability for strongly minimal theories of graphs (Russian), Algebra i Logika 28 (1989), no. 3, p. 280-297, 366; translation in Algebra and Logic 28 (1989), no. 3, p. 183-194 (1990). Zbl0727.05028MR1066316
  3. Möller (R.G.).— Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad. J. Math. 54, no. 4, p. 795-827 (2002). Zbl1007.22010MR1913920
  4. Pillay (A.).— Geometric stability theory, Oxford Science Publications, Oxford. Univ. Press, New York (1996). Zbl0871.03023MR1429864
  5. Willis (G.).— The structure of totally disconnected locally compact groups, Math. Ann. 300, p. 341-363 (1994). Zbl0811.22004MR1299067
  6. Willis (G.).— Further properties of the scale function on a totally disconnected group, J. of Algebra 237, p. 142-164 (2001). Zbl0982.22001MR1813900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.