The linear symmetric systems associated with the modified Cherednik operators and applications

Hatem Mejjaoli[1]

  • [1] Department of Mathematics College of Sciences King Faisal University Ahsaa, Kingdom of Saudi Arabia

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 1, page 213-245
  • ISSN: 1259-1734

Abstract

top
We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.

How to cite

top

Mejjaoli, Hatem. "The linear symmetric systems associated with the modified Cherednik operators and applications." Annales mathématiques Blaise Pascal 19.1 (2012): 213-245. <http://eudml.org/doc/251046>.

@article{Mejjaoli2012,
abstract = {We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.},
affiliation = {Department of Mathematics College of Sciences King Faisal University Ahsaa, Kingdom of Saudi Arabia},
author = {Mejjaoli, Hatem},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Modified Cherednik operators; modified Cherednik symmetric systems; energy estimates; finite speed of propagation; generalized wave equations with variable coefficients; modified Cherednik operators; well-posedness},
language = {eng},
month = {1},
number = {1},
pages = {213-245},
publisher = {Annales mathématiques Blaise Pascal},
title = {The linear symmetric systems associated with the modified Cherednik operators and applications},
url = {http://eudml.org/doc/251046},
volume = {19},
year = {2012},
}

TY - JOUR
AU - Mejjaoli, Hatem
TI - The linear symmetric systems associated with the modified Cherednik operators and applications
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 213
EP - 245
AB - We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.
LA - eng
KW - Modified Cherednik operators; modified Cherednik symmetric systems; energy estimates; finite speed of propagation; generalized wave equations with variable coefficients; modified Cherednik operators; well-posedness
UR - http://eudml.org/doc/251046
ER -

References

top
  1. N. Ben Salem, A. Ould Ahmed Salem, Convolution structure associated with the Jacobi-Dunkl operator on , Ramanujan J. 12 (2006), 359-378 Zbl1122.44002MR2293796
  2. J. Chazarain, A. Piriou, Introduction to the theory of linear partial differential equations, (1982), North-Holland Publishing Company Zbl0487.35002MR678605
  3. I. Cherednik, A unification of Knizhnik-Zamolodchnikove equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432 Zbl0725.20012MR1128220
  4. F. Chouchene, M. Mili, K. Trimèche, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on , Anal. and Appl. 1 (2003), 387-412 Zbl1056.43003MR2009310
  5. R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik", Math. Ann. 100 (1928), 32-74 Zbl54.0486.01MR1512478
  6. K. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure and Appl. Math. 7 (1954), 345-392 Zbl0059.08902MR62932
  7. K. Friedrichs, Symmetric positive linear hyperbolic differential equations, Comm. Pure and Appl. Math. 11 (1958), 333-418 Zbl0083.31802MR100718
  8. K. Friedrichs, P. D. Lax, On symmetrizable differential operators, Proc. Symp. Pure Math. 9 (1967), 128-137 Zbl0184.36603MR239256
  9. P. D. Lax, On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure and Appl. Math. 8 (1955), 615-633 Zbl0067.07502MR78558
  10. P. D. Lax, R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure and Appl. Math. 13 (1960), 427-455 Zbl0094.07502MR118949
  11. G. Lebeau, Majeure d’équations aux dérivées partielles, Prépublication de l’école polytechniques 28 (1990), 43-62 
  12. Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75-121 Zbl0836.43017MR1353018
  13. Eric M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, 8 (2000), Mathematical Society of Japan, Tokyo Zbl0984.33001MR1805058
  14. J. Rauch, L 2 is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure. and Appl. Math. 15 (1972), 265-285 Zbl0226.35056MR298232
  15. B. Schapira, Contributions to the hypergeometric function theory of Heckman and Opdam: sharpe stimates, Schwartz spaces, heat kernel, Geom. Funct. Anal. 18 (2008), 222-250 Zbl1147.33004MR2399102
  16. T. Shirota, On the propagation speed of a hyperbolic operator with mixed boundary conditions, J. Fac. Sci. Hokkaido Univ. 22 (1972), 25-31 Zbl0234.35060MR304871
  17. H. Triebel, Interpolation theory, functions spaces differential operators, (1978), North Holland, Amesterdam Zbl0387.46032
  18. H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann’s Vorlesungen in 4-ter Auflage neu bearbeitet, Braunschweig, Friederich Vieweg 1 (1900), 1-390 Zbl31.0745.01
  19. S. Zaremba, Sopra un theorema d’unicità relativo alla equazione delle onde sferiche, Rend. Accad. Naz. Lincei 24 (1915), 904-908 Zbl45.0566.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.