On bounded generalized Harish-Chandra modules

Ivan Penkov[1]; Vera Serganova[2]

  • [1] Jacobs University Bremen School of Engineering and Science Campus Ring 1 28759 Bremen (Germany)
  • [2] University of California Berkeley Department of Mathematics Berkeley CA 94720 (USA)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 477-496
  • ISSN: 0373-0956

Abstract

top
Let 𝔤 be a complex reductive Lie algebra and 𝔨 𝔤 be any reductive in 𝔤 subalgebra. We call a ( 𝔤 , 𝔨 ) -module M bounded if the 𝔨 -multiplicities of M are uniformly bounded. In this paper we initiate a general study of simple bounded ( 𝔤 , 𝔨 ) -modules. We prove a strong necessary condition for a subalgebra 𝔨 to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded ( 𝔤 , 𝔨 ) -module, and then establish a sufficient condition for a subalgebra 𝔨 to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of 𝔤 = sl ( n ) .

How to cite

top

Penkov, Ivan, and Serganova, Vera. "On bounded generalized Harish-Chandra modules." Annales de l’institut Fourier 62.2 (2012): 477-496. <http://eudml.org/doc/251052>.

@article{Penkov2012,
abstract = {Let $\mathfrak\{g\}$ be a complex reductive Lie algebra and $\mathfrak\{k\}\subset \mathfrak\{g\}$ be any reductive in $\mathfrak\{g\}$ subalgebra. We call a $(\mathfrak\{g\},\mathfrak\{k\})$-module $M$ bounded if the $\mathfrak\{k\}$-multiplicities of $M$ are uniformly bounded. In this paper we initiate a general study of simple bounded $(\mathfrak\{g\},\mathfrak\{k\})$-modules. We prove a strong necessary condition for a subalgebra $\mathfrak\{k\}$ to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded $(\mathfrak\{g\},\mathfrak\{k\})$-module, and then establish a sufficient condition for a subalgebra $\mathfrak\{k\}$ to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of $\mathfrak\{g\}=\mathrm\{sl\}(n)$.},
affiliation = {Jacobs University Bremen School of Engineering and Science Campus Ring 1 28759 Bremen (Germany); University of California Berkeley Department of Mathematics Berkeley CA 94720 (USA)},
author = {Penkov, Ivan, Serganova, Vera},
journal = {Annales de l’institut Fourier},
keywords = {Generalized Harish-Chandra module; bounded $(\mathfrak\{g\},\mathfrak\{k\})$-module; generalized Harish-Chandra module; bounded -module},
language = {eng},
number = {2},
pages = {477-496},
publisher = {Association des Annales de l’institut Fourier},
title = {On bounded generalized Harish-Chandra modules},
url = {http://eudml.org/doc/251052},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Penkov, Ivan
AU - Serganova, Vera
TI - On bounded generalized Harish-Chandra modules
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 477
EP - 496
AB - Let $\mathfrak{g}$ be a complex reductive Lie algebra and $\mathfrak{k}\subset \mathfrak{g}$ be any reductive in $\mathfrak{g}$ subalgebra. We call a $(\mathfrak{g},\mathfrak{k})$-module $M$ bounded if the $\mathfrak{k}$-multiplicities of $M$ are uniformly bounded. In this paper we initiate a general study of simple bounded $(\mathfrak{g},\mathfrak{k})$-modules. We prove a strong necessary condition for a subalgebra $\mathfrak{k}$ to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded $(\mathfrak{g},\mathfrak{k})$-module, and then establish a sufficient condition for a subalgebra $\mathfrak{k}$ to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of $\mathfrak{g}=\mathrm{sl}(n)$.
LA - eng
KW - Generalized Harish-Chandra module; bounded $(\mathfrak{g},\mathfrak{k})$-module; generalized Harish-Chandra module; bounded -module
UR - http://eudml.org/doc/251052
ER -

References

top
  1. A. S. Amitsur, J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463 Zbl0040.01101MR36751
  2. N. Wallach B. Gross, A distinguished family of unitary representations for the exceptional groups of real rank 4. Lie theory and geometry, Progr. Math. 123 (1994), 289-304 Zbl0839.22006MR1327538
  3. Alexandre Beĭlinson, Joseph Bernstein, Localisation de g -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
  4. J. Bernstein, S. Gelfand, Tensor products of finite and infinite-dimensional representations of semi-simple Lie algebras, Compositio Math. 41 (1980), 245-285 Zbl0445.17006MR581584
  5. W. Borho, J. C. Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), 1-53 Zbl0327.17002MR453826
  6. Jr. D. Vogan, The unitary dual of G 2 , Invent. Math. 116 (1994), 677-791 Zbl0808.22003MR1253210
  7. J. Dixmier, Enveloping algebras, 14 (1977), North Holland, Amsterdam MR498740
  8. E. B. Dynkin, The maximal subgroups of the classical groups, Trudy Moscov. Mat. Obsh. 1 (1952), 39-166 Zbl0048.01601MR49903
  9. T. J. Enright, R. Parthasarathy, N. Wallach, J. Wolf, Unitary derived functor modules with small spectrum, Acta Math. 154 (2006), 105-136 Zbl0568.22007MR772433
  10. C. Faith, Algebra II, Ring Theory, (1976), Springer-Verlag Zbl0508.16001MR427349
  11. S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces, Trans. Amer. Math. Soc. 322 (1990), 757-781 Zbl0712.17005MR1013330
  12. V. Guillemin, D. Quillen, S. Sternberg, The integrability of characteristics, Comm. Pure Appl. Math. 23 (1970), 39-77 Zbl0203.33002MR461597
  13. Harish-Chandra, Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. London, Ser. A 189 (1947), 372-401 MR21941
  14. A. Joseph, On the associated variety of a primitive ideal, J. Algebra 2 (1985), 509-523 Zbl0594.17009MR786766
  15. Anthony Joseph, Some ring-theoretic techniques and open problems in enveloping algebras, Noncommutative rings (Berkeley, CA, 1989) 24 (1992), 27-67, Springer, New York Zbl0752.17008MR1230216
  16. V. G. Kac, Some remarks on nilpotent of orbits, J. Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
  17. Victor G. Kac, Constructing groups associated to infinite-dimensional Lie algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) 4 (1985), 167-216, Springer, New York Zbl0614.22006MR823320
  18. M. Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math. 38 (1976/77), 33-53 Zbl0354.35082MR430304
  19. Anthony W. Knapp, David A. Vogan, Cohomological induction and unitary representations, 45 (1995), Princeton University Press, Princeton, NJ Zbl0863.22011MR1330919
  20. G. R. Krause, T. H. Lenagan, Growth of algebras and Gel fand-Kirillov dimension, 116 (1985), Pitman (Advanced Publishing Program), Boston, MA Zbl0564.16001MR781129
  21. R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups 31 (1989), 101-170, Amer. Math. Soc., Providence, RI Zbl0741.22009MR1011897
  22. Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537-592 Zbl0962.17002MR1775361
  23. A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, (1990), Springer-Verlag, Berlin Zbl0722.22004MR1064110
  24. I. Penkov, V. Serganova, Generalized Harish-Chandra modules, Moscow Math. J. 2 (2002), 753-767 Zbl1036.17005MR1986089
  25. I. Penkov, V. Serganova, Bounded simple 𝔤 , sl ( 2 ) -modules for rk 𝔤 = 2 , Journ. Lie Theory 20 (2010), 581-615 Zbl1236.17012MR2743105
  26. I. Penkov, V. Serganova, G. Zuckerman, On the existence of ( 𝔤 , 𝔨 ) -modules of finite type, Duke Math. J. 125 (2004), 329-349 Zbl1097.17007MR2096676
  27. I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules: a new direction of the structure theory of representations, Acta Applic. Math. 81 (2004), 311-326 Zbl1082.17006MR2069343
  28. I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules with generic minimal 𝔨 -type, Asian J. of Math. 8 (2004), 795-812 Zbl1079.17004MR2127949
  29. I. Penkov, G. Zuckerman, A construction of generalized Harish-Chandra modules with arbitrary minimal 𝔨 -type, Canad. Math. Bull. 50 (2007), 603-609 Zbl1173.17010MR2364210
  30. W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raeumen, Invent. Math. 116 (1969/1970), 61-80 Zbl0219.32013MR259164
  31. M. W. Baldoni Silva, D. Barbasch, The unitary spectrum of real rank one groups, Invent. Math. 72 (1983), 27-55 Zbl0561.22009MR696689
  32. R.S. Strichartz, Harmonic analysis on hyperboloids, J. Fuct. Analysis 12 (1973), 341-383 Zbl0253.43013MR352884
  33. E.B. Vinberg, B.N. Kimelfield, Homogeneous domains on flag manifolds and spherical subgroups of semi-simple Lie groups, Func. Anal. i Pril. 12 (1978), 12-19 Zbl0439.53055
  34. David A. Vogan, Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) 880 (1981), 506-535, Springer, Berlin Zbl0464.22007MR644845
  35. G. Zuckerman, Tensor product of finite- and infinite-dimensional representations of semisimple Lie groups, Ann. Math. 106 (1977), 295-308 Zbl0384.22004MR457636

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.