On bounded generalized Harish-Chandra modules
Ivan Penkov[1]; Vera Serganova[2]
- [1] Jacobs University Bremen School of Engineering and Science Campus Ring 1 28759 Bremen (Germany)
- [2] University of California Berkeley Department of Mathematics Berkeley CA 94720 (USA)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 477-496
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPenkov, Ivan, and Serganova, Vera. "On bounded generalized Harish-Chandra modules." Annales de l’institut Fourier 62.2 (2012): 477-496. <http://eudml.org/doc/251052>.
@article{Penkov2012,
abstract = {Let $\mathfrak\{g\}$ be a complex reductive Lie algebra and $\mathfrak\{k\}\subset \mathfrak\{g\}$ be any reductive in $\mathfrak\{g\}$ subalgebra. We call a $(\mathfrak\{g\},\mathfrak\{k\})$-module $M$ bounded if the $\mathfrak\{k\}$-multiplicities of $M$ are uniformly bounded. In this paper we initiate a general study of simple bounded $(\mathfrak\{g\},\mathfrak\{k\})$-modules. We prove a strong necessary condition for a subalgebra $\mathfrak\{k\}$ to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded $(\mathfrak\{g\},\mathfrak\{k\})$-module, and then establish a sufficient condition for a subalgebra $\mathfrak\{k\}$ to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of $\mathfrak\{g\}=\mathrm\{sl\}(n)$.},
affiliation = {Jacobs University Bremen School of Engineering and Science Campus Ring 1 28759 Bremen (Germany); University of California Berkeley Department of Mathematics Berkeley CA 94720 (USA)},
author = {Penkov, Ivan, Serganova, Vera},
journal = {Annales de l’institut Fourier},
keywords = {Generalized Harish-Chandra module; bounded $(\mathfrak\{g\},\mathfrak\{k\})$-module; generalized Harish-Chandra module; bounded -module},
language = {eng},
number = {2},
pages = {477-496},
publisher = {Association des Annales de l’institut Fourier},
title = {On bounded generalized Harish-Chandra modules},
url = {http://eudml.org/doc/251052},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Penkov, Ivan
AU - Serganova, Vera
TI - On bounded generalized Harish-Chandra modules
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 477
EP - 496
AB - Let $\mathfrak{g}$ be a complex reductive Lie algebra and $\mathfrak{k}\subset \mathfrak{g}$ be any reductive in $\mathfrak{g}$ subalgebra. We call a $(\mathfrak{g},\mathfrak{k})$-module $M$ bounded if the $\mathfrak{k}$-multiplicities of $M$ are uniformly bounded. In this paper we initiate a general study of simple bounded $(\mathfrak{g},\mathfrak{k})$-modules. We prove a strong necessary condition for a subalgebra $\mathfrak{k}$ to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded $(\mathfrak{g},\mathfrak{k})$-module, and then establish a sufficient condition for a subalgebra $\mathfrak{k}$ to be bounded (Theorem 5.1). As a result we are able to classify the maximal bounded reductive subalgebras of $\mathfrak{g}=\mathrm{sl}(n)$.
LA - eng
KW - Generalized Harish-Chandra module; bounded $(\mathfrak{g},\mathfrak{k})$-module; generalized Harish-Chandra module; bounded -module
UR - http://eudml.org/doc/251052
ER -
References
top- A. S. Amitsur, J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463 Zbl0040.01101MR36751
- N. Wallach B. Gross, A distinguished family of unitary representations for the exceptional groups of real rank 4. Lie theory and geometry, Progr. Math. 123 (1994), 289-304 Zbl0839.22006MR1327538
- Alexandre Beĭlinson, Joseph Bernstein, Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15-18 Zbl0476.14019MR610137
- J. Bernstein, S. Gelfand, Tensor products of finite and infinite-dimensional representations of semi-simple Lie algebras, Compositio Math. 41 (1980), 245-285 Zbl0445.17006MR581584
- W. Borho, J. C. Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), 1-53 Zbl0327.17002MR453826
- Jr. D. Vogan, The unitary dual of , Invent. Math. 116 (1994), 677-791 Zbl0808.22003MR1253210
- J. Dixmier, Enveloping algebras, 14 (1977), North Holland, Amsterdam MR498740
- E. B. Dynkin, The maximal subgroups of the classical groups, Trudy Moscov. Mat. Obsh. 1 (1952), 39-166 Zbl0048.01601MR49903
- T. J. Enright, R. Parthasarathy, N. Wallach, J. Wolf, Unitary derived functor modules with small spectrum, Acta Math. 154 (2006), 105-136 Zbl0568.22007MR772433
- C. Faith, Algebra II, Ring Theory, (1976), Springer-Verlag Zbl0508.16001MR427349
- S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces, Trans. Amer. Math. Soc. 322 (1990), 757-781 Zbl0712.17005MR1013330
- V. Guillemin, D. Quillen, S. Sternberg, The integrability of characteristics, Comm. Pure Appl. Math. 23 (1970), 39-77 Zbl0203.33002MR461597
- Harish-Chandra, Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. London, Ser. A 189 (1947), 372-401 MR21941
- A. Joseph, On the associated variety of a primitive ideal, J. Algebra 2 (1985), 509-523 Zbl0594.17009MR786766
- Anthony Joseph, Some ring-theoretic techniques and open problems in enveloping algebras, Noncommutative rings (Berkeley, CA, 1989) 24 (1992), 27-67, Springer, New York Zbl0752.17008MR1230216
- V. G. Kac, Some remarks on nilpotent of orbits, J. Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
- Victor G. Kac, Constructing groups associated to infinite-dimensional Lie algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) 4 (1985), 167-216, Springer, New York Zbl0614.22006MR823320
- M. Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math. 38 (1976/77), 33-53 Zbl0354.35082MR430304
- Anthony W. Knapp, David A. Vogan, Cohomological induction and unitary representations, 45 (1995), Princeton University Press, Princeton, NJ Zbl0863.22011MR1330919
- G. R. Krause, T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 116 (1985), Pitman (Advanced Publishing Program), Boston, MA Zbl0564.16001MR781129
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups 31 (1989), 101-170, Amer. Math. Soc., Providence, RI Zbl0741.22009MR1011897
- Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), 537-592 Zbl0962.17002MR1775361
- A. L. Onishchik, È. B. Vinberg, Lie groups and algebraic groups, (1990), Springer-Verlag, Berlin Zbl0722.22004MR1064110
- I. Penkov, V. Serganova, Generalized Harish-Chandra modules, Moscow Math. J. 2 (2002), 753-767 Zbl1036.17005MR1986089
- I. Penkov, V. Serganova, Bounded simple -modules for , Journ. Lie Theory 20 (2010), 581-615 Zbl1236.17012MR2743105
- I. Penkov, V. Serganova, G. Zuckerman, On the existence of -modules of finite type, Duke Math. J. 125 (2004), 329-349 Zbl1097.17007MR2096676
- I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules: a new direction of the structure theory of representations, Acta Applic. Math. 81 (2004), 311-326 Zbl1082.17006MR2069343
- I. Penkov, G. Zuckerman, Generalized Harish-Chandra modules with generic minimal -type, Asian J. of Math. 8 (2004), 795-812 Zbl1079.17004MR2127949
- I. Penkov, G. Zuckerman, A construction of generalized Harish-Chandra modules with arbitrary minimal -type, Canad. Math. Bull. 50 (2007), 603-609 Zbl1173.17010MR2364210
- W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raeumen, Invent. Math. 116 (1969/1970), 61-80 Zbl0219.32013MR259164
- M. W. Baldoni Silva, D. Barbasch, The unitary spectrum of real rank one groups, Invent. Math. 72 (1983), 27-55 Zbl0561.22009MR696689
- R.S. Strichartz, Harmonic analysis on hyperboloids, J. Fuct. Analysis 12 (1973), 341-383 Zbl0253.43013MR352884
- E.B. Vinberg, B.N. Kimelfield, Homogeneous domains on flag manifolds and spherical subgroups of semi-simple Lie groups, Func. Anal. i Pril. 12 (1978), 12-19 Zbl0439.53055
- David A. Vogan, Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) 880 (1981), 506-535, Springer, Berlin Zbl0464.22007MR644845
- G. Zuckerman, Tensor product of finite- and infinite-dimensional representations of semisimple Lie groups, Ann. Math. 106 (1977), 295-308 Zbl0384.22004MR457636
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.