The summatory function of -additive functions on pseudo-polynomial sequences
- [1] Department for Analysis and Computational Number Theory Graz University of Technology 8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 153-171
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMadritsch, Manfred G.. "The summatory function of $q$-additive functions on pseudo-polynomial sequences." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 153-171. <http://eudml.org/doc/251059>.
@article{Madritsch2012,
abstract = {The present paper deals with the summatory function of functions acting on the digits of an $q$-ary expansion. In particular let $n$ be a positive integer, then we call\begin\{gather*\} n=\sum \_\{r=0\}^\ell d\_r(n)q^r\quad \text\{with\}\quad d\_r(n)\in \lbrace 0,\ldots ,q-1\rbrace \end\{gather*\}its $q$-ary expansion. We call a function $f$strictly $q$-additive, if for a given value, it acts only on the digits of its representation, i.e.,\[ f(n)=\sum \_\{r=0\}^\ell f\left(d\_r(n)\right). \]Let $p(x)=\alpha _0x^\{\beta _0\}+\cdots +\alpha _dx^\{\beta _d\}$ with $\alpha _0,\alpha _1,\ldots ,\alpha _d,\in \mathbb\{R\}$, $\alpha _0>0$, $\beta _0>\cdots >\beta _d\ge 1$ and at least one $\beta _i\notin \mathbb\{Z\}$. Then we call $p$ a pseudo-polynomial.The goal is to prove that for a $q$-additive function $f$ there exists an $\varepsilon >0$ such that\begin\{multline*\} \sum \_\{n\le N\}f\left(\left\lfloor p(n)\right\rfloor \right) =\mu \_fN\log \_q(p(N))\\ +NF\_\{f,\beta \_0\}\left(\log \_q(p(N))\right) +\mathcal\{O\}\left(N^\{1-\varepsilon \}\right), \end\{multline*\}where $\mu _f$ is the mean of the values of $f$ and $F_\{f,\beta _0\}$ is a $1$-periodic nowhere differentiable function.This result is motivated by results of Nakai and Shiokawa and Peter.},
affiliation = {Department for Analysis and Computational Number Theory Graz University of Technology 8010 Graz, Austria},
author = {Madritsch, Manfred G.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {q additive function; pseudo-polynomial; q-additive function},
language = {eng},
month = {3},
number = {1},
pages = {153-171},
publisher = {Société Arithmétique de Bordeaux},
title = {The summatory function of $q$-additive functions on pseudo-polynomial sequences},
url = {http://eudml.org/doc/251059},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Madritsch, Manfred G.
TI - The summatory function of $q$-additive functions on pseudo-polynomial sequences
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 153
EP - 171
AB - The present paper deals with the summatory function of functions acting on the digits of an $q$-ary expansion. In particular let $n$ be a positive integer, then we call\begin{gather*} n=\sum _{r=0}^\ell d_r(n)q^r\quad \text{with}\quad d_r(n)\in \lbrace 0,\ldots ,q-1\rbrace \end{gather*}its $q$-ary expansion. We call a function $f$strictly $q$-additive, if for a given value, it acts only on the digits of its representation, i.e.,\[ f(n)=\sum _{r=0}^\ell f\left(d_r(n)\right). \]Let $p(x)=\alpha _0x^{\beta _0}+\cdots +\alpha _dx^{\beta _d}$ with $\alpha _0,\alpha _1,\ldots ,\alpha _d,\in \mathbb{R}$, $\alpha _0>0$, $\beta _0>\cdots >\beta _d\ge 1$ and at least one $\beta _i\notin \mathbb{Z}$. Then we call $p$ a pseudo-polynomial.The goal is to prove that for a $q$-additive function $f$ there exists an $\varepsilon >0$ such that\begin{multline*} \sum _{n\le N}f\left(\left\lfloor p(n)\right\rfloor \right) =\mu _fN\log _q(p(N))\\ +NF_{f,\beta _0}\left(\log _q(p(N))\right) +\mathcal{O}\left(N^{1-\varepsilon }\right), \end{multline*}where $\mu _f$ is the mean of the values of $f$ and $F_{f,\beta _0}$ is a $1$-periodic nowhere differentiable function.This result is motivated by results of Nakai and Shiokawa and Peter.
LA - eng
KW - q additive function; pseudo-polynomial; q-additive function
UR - http://eudml.org/doc/251059
ER -
References
top- H. Delange, Sur la fonction sommatoire de la fonction“somme des chiffres”. Enseignement Math. (2) 21 (1975), no. 1, 31–47. Zbl0306.10005MR379414
- P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy, Mellin transforms and asymptotics: digital sums. Theoret. Comput. Sci. 123 (1994), no. 2, 291–314. Zbl0788.44004MR1256203
- A. O. Gelʼfond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13 (1967/1968), 259–265. Zbl0155.09003MR220693
- B. Gittenberger and J. M. Thuswaldner, The moments of the sum-of-digits function in number fields. Canad. Math. Bull. 42 (1999), no. 1, 68–77. Zbl1011.11009MR1695870
- P. J. Grabner and H.-K. Hwang, Digital sums and divide-and-conquer recurrences: Fourier expansions and absolute convergence. Constr. Approx. 21 (2005), no. 2, 149–179. Zbl1088.11063MR2107936
- P. J. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy, On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 263–271. Zbl0797.11012MR1271366
- H. Iwaniec and E. Kowalski, Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. Zbl1059.11001MR2061214
- P. Kirschenhofer, On the variance of the sum of digits function. Number-theoretic analysis (Vienna, 1988–89), Lecture Notes in Math., vol. 1452, Springer, Berlin, 1990, pp. 112–116. Zbl0714.11005MR1084640
- E. Krätzel, Lattice points. Mathematics and its Applications (East European Series), vol. 33, Kluwer Academic Publishers Group, Dordrecht, 1988. Zbl0675.10031MR998378
- C. Mauduit and J. Rivat, Propriétés -multiplicatives de la suite , . Acta Arith. 118 (2005), no. 2, 187–203. Zbl1082.11058MR2141049
- C. Mauduit and J. Rivat, La somme des chiffres des carrés. Acta Math. 203 (2009), no. 1, 107–148. MR2545827
- Y. Nakai and I. Shiokawa, A class of normal numbers. Japan. J. Math. (N.S.) 16 (1990), no. 1, 17–29. Zbl0708.11037MR1064444
- M. Peter, The summatory function of the sum-of-digits function on polynomial sequences. Acta Arith. 104 (2002), no. 1, 85–96. Zbl1027.11070MR1913736
- I. Shiokawa, On the sum of digits of prime numbers. Proc. Japan Acad. 50 (1974), 551–554. Zbl0301.10047MR369238
- J. M. Thuswaldner, The sum of digits function in number fields. Bull. London Math. Soc. 30 (1998), no. 1, 37–45. Zbl0921.11051MR1479034
- E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed. The Clarendon Press Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. Zbl0601.10026MR882550
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.