Surjectivity of Siegel Φ -operator for square free level and small weight

Siegfried Böcherer[1]; Tomoyoshi Ibukiyama[2]

  • [1] Kunzenhof 4B 79117 Freiburg (Germany)
  • [2] Osaka University Graduate School of Science Department of Mathematics Machikaneyama 1-1, Toyonaka Osaka, 560-0043 (Japan)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 121-144
  • ISSN: 0373-0956

Abstract

top
We show the surjectivity of the (global) Siegel Φ -operator for modular forms for certain congruence subgroups of Sp ( 2 , ) and weight k = 4 , where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.

How to cite

top

Böcherer, Siegfried, and Ibukiyama, Tomoyoshi. "Surjectivity of Siegel $\Phi $-operator for square free level and small weight." Annales de l’institut Fourier 62.1 (2012): 121-144. <http://eudml.org/doc/251070>.

@article{Böcherer2012,
abstract = {We show the surjectivity of the (global) Siegel $\Phi $-operator for modular forms for certain congruence subgroups of $\mathrm\{Sp\}(2,\mathbb\{Z\})$ and weight $k=4$, where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.},
affiliation = {Kunzenhof 4B 79117 Freiburg (Germany); Osaka University Graduate School of Science Department of Mathematics Machikaneyama 1-1, Toyonaka Osaka, 560-0043 (Japan)},
author = {Böcherer, Siegfried, Ibukiyama, Tomoyoshi},
journal = {Annales de l’institut Fourier},
keywords = {Siegel modular form; $\Phi $-operator; Theta series; Siegel modular forms; -operator; theta series},
language = {eng},
number = {1},
pages = {121-144},
publisher = {Association des Annales de l’institut Fourier},
title = {Surjectivity of Siegel $\Phi $-operator for square free level and small weight},
url = {http://eudml.org/doc/251070},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Böcherer, Siegfried
AU - Ibukiyama, Tomoyoshi
TI - Surjectivity of Siegel $\Phi $-operator for square free level and small weight
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 121
EP - 144
AB - We show the surjectivity of the (global) Siegel $\Phi $-operator for modular forms for certain congruence subgroups of $\mathrm{Sp}(2,\mathbb{Z})$ and weight $k=4$, where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.
LA - eng
KW - Siegel modular form; $\Phi $-operator; Theta series; Siegel modular forms; -operator; theta series
UR - http://eudml.org/doc/251070
ER -

References

top
  1. Tsuneo Arakawa, Vector-valued Siegel’s modular forms of degree two and the associated Andrianov L -functions, Manuscripta Math. 44 (1983), 155-185 Zbl0517.10024MR709851
  2. Siegfried Böcherer, On Eisenstein series of degree two for squarefree levels and the genus version of the basis problem. I, Automorphic forms and zeta functions (2006), 43-70, World Sci. Publ., Hackensack, NJ Zbl1152.11329MR2208209
  3. Siegfried Böcherer, The genus version of the basis problem II: The case of oldforms, (2009) Zbl06439777
  4. Siegfried Böcherer, Masaaki Furusawa, Rainer Schulze-Pillot, On the global Gross-Prasad conjecture for Yoshida liftings, Contributions to automorphic forms, geometry, and number theory (2004), 105-130, Johns Hopkins Univ. Press, Baltimore, MD Zbl1088.11036MR2058606
  5. Siegfried Böcherer, Yumiko Hironaka, Fumihiro Sato, Linear independence of local densities of quadratic forms and its application to the theory of Siegel modular forms, Quadratic forms—algebra, arithmetic, and geometry 493 (2009), 51-82, Amer. Math. Soc., Providence, RI Zbl1239.11042MR2537093
  6. Siegfried Böcherer, Rainer Schulze-Pillot, Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121 (1991), 35-96 Zbl0726.11030MR1096467
  7. Paul B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983) 46 (1984), 114-137, Birkhäuser Boston, Boston, MA Zbl0544.10023MR763012
  8. Paul B. Garrett, Integral representations of Eisenstein series and L -functions, Number theory, trace formulas and discrete groups (Oslo, 1987) (1989), 241-264, Academic Press, Boston, MA Zbl0671.10024MR993320
  9. Tomoyoshi Ibukiyama, On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), 245-283 Zbl0830.11019MR1255043
  10. Tomoyoshi Ibukiyama, Satoshi Wakatsuki, Siegel modular forms of small weight and the Witt operator, Quadratic forms—algebra, arithmetic, and geometry 493 (2009), 189-209, Amer. Math. Soc., Providence, RI Zbl1244.11049MR2537101
  11. Hidenori Katsurada, Rainer Schulze-Pillot, Genus theta series, Hecke operators and the basis problem for Eisenstein series, Automorphic forms and zeta functions (2006), 234-261, World Sci. Publ., Hackensack, NJ Zbl1161.11333MR2208777
  12. M. Klein, Verschwindungssätze für Hermitesche sowie Siegelsche Modulformen zu Γ 0 n ( N ) sowie Γ 1 n ( N ) , (2004) 
  13. Toshitsune Miyake, Modular forms, (1989), Springer-Verlag, Berlin Zbl0701.11014MR1021004
  14. C. Poor, D. S. Yuen, Dimensions of cusp forms for Γ 0 ( p ) in degree two and small weights, Abh. Math. Sem. Univ. Hamburg 77 (2007), 59-80 Zbl1214.11059MR2379329
  15. I. Satake, Compactification de espaces quotients de Siegel II, Séminaire Cartan (1957/58), 1-10, E. N. S. 
  16. I. Satake, L’opérateur Φ , Séminaire Cartan (1957/58), 1-18, E. N. S. 
  17. I. Satake, Surjectivité globale de opérateur Φ , Séminaire Cartan (1957/58), 1-17, E. N. S. 
  18. Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
  19. Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), 527-606 Zbl0012.19703MR1503238
  20. J.-L. Waldspurger, Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. Math. 50 (1978/79), 135-168 Zbl0393.10025MR517775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.