Surjectivity of Siegel -operator for square free level and small weight
Siegfried Böcherer[1]; Tomoyoshi Ibukiyama[2]
- [1] Kunzenhof 4B 79117 Freiburg (Germany)
- [2] Osaka University Graduate School of Science Department of Mathematics Machikaneyama 1-1, Toyonaka Osaka, 560-0043 (Japan)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 121-144
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBöcherer, Siegfried, and Ibukiyama, Tomoyoshi. "Surjectivity of Siegel $\Phi $-operator for square free level and small weight." Annales de l’institut Fourier 62.1 (2012): 121-144. <http://eudml.org/doc/251070>.
@article{Böcherer2012,
abstract = {We show the surjectivity of the (global) Siegel $\Phi $-operator for modular forms for certain congruence subgroups of $\mathrm\{Sp\}(2,\mathbb\{Z\})$ and weight $k=4$, where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.},
affiliation = {Kunzenhof 4B 79117 Freiburg (Germany); Osaka University Graduate School of Science Department of Mathematics Machikaneyama 1-1, Toyonaka Osaka, 560-0043 (Japan)},
author = {Böcherer, Siegfried, Ibukiyama, Tomoyoshi},
journal = {Annales de l’institut Fourier},
keywords = {Siegel modular form; $\Phi $-operator; Theta series; Siegel modular forms; -operator; theta series},
language = {eng},
number = {1},
pages = {121-144},
publisher = {Association des Annales de l’institut Fourier},
title = {Surjectivity of Siegel $\Phi $-operator for square free level and small weight},
url = {http://eudml.org/doc/251070},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Böcherer, Siegfried
AU - Ibukiyama, Tomoyoshi
TI - Surjectivity of Siegel $\Phi $-operator for square free level and small weight
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 121
EP - 144
AB - We show the surjectivity of the (global) Siegel $\Phi $-operator for modular forms for certain congruence subgroups of $\mathrm{Sp}(2,\mathbb{Z})$ and weight $k=4$, where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.
LA - eng
KW - Siegel modular form; $\Phi $-operator; Theta series; Siegel modular forms; -operator; theta series
UR - http://eudml.org/doc/251070
ER -
References
top- Tsuneo Arakawa, Vector-valued Siegel’s modular forms of degree two and the associated Andrianov -functions, Manuscripta Math. 44 (1983), 155-185 Zbl0517.10024MR709851
- Siegfried Böcherer, On Eisenstein series of degree two for squarefree levels and the genus version of the basis problem. I, Automorphic forms and zeta functions (2006), 43-70, World Sci. Publ., Hackensack, NJ Zbl1152.11329MR2208209
- Siegfried Böcherer, The genus version of the basis problem II: The case of oldforms, (2009) Zbl06439777
- Siegfried Böcherer, Masaaki Furusawa, Rainer Schulze-Pillot, On the global Gross-Prasad conjecture for Yoshida liftings, Contributions to automorphic forms, geometry, and number theory (2004), 105-130, Johns Hopkins Univ. Press, Baltimore, MD Zbl1088.11036MR2058606
- Siegfried Böcherer, Yumiko Hironaka, Fumihiro Sato, Linear independence of local densities of quadratic forms and its application to the theory of Siegel modular forms, Quadratic forms—algebra, arithmetic, and geometry 493 (2009), 51-82, Amer. Math. Soc., Providence, RI Zbl1239.11042MR2537093
- Siegfried Böcherer, Rainer Schulze-Pillot, Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121 (1991), 35-96 Zbl0726.11030MR1096467
- Paul B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983) 46 (1984), 114-137, Birkhäuser Boston, Boston, MA Zbl0544.10023MR763012
- Paul B. Garrett, Integral representations of Eisenstein series and -functions, Number theory, trace formulas and discrete groups (Oslo, 1987) (1989), 241-264, Academic Press, Boston, MA Zbl0671.10024MR993320
- Tomoyoshi Ibukiyama, On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40 (1993), 245-283 Zbl0830.11019MR1255043
- Tomoyoshi Ibukiyama, Satoshi Wakatsuki, Siegel modular forms of small weight and the Witt operator, Quadratic forms—algebra, arithmetic, and geometry 493 (2009), 189-209, Amer. Math. Soc., Providence, RI Zbl1244.11049MR2537101
- Hidenori Katsurada, Rainer Schulze-Pillot, Genus theta series, Hecke operators and the basis problem for Eisenstein series, Automorphic forms and zeta functions (2006), 234-261, World Sci. Publ., Hackensack, NJ Zbl1161.11333MR2208777
- M. Klein, Verschwindungssätze für Hermitesche sowie Siegelsche Modulformen zu sowie , (2004)
- Toshitsune Miyake, Modular forms, (1989), Springer-Verlag, Berlin Zbl0701.11014MR1021004
- C. Poor, D. S. Yuen, Dimensions of cusp forms for in degree two and small weights, Abh. Math. Sem. Univ. Hamburg 77 (2007), 59-80 Zbl1214.11059MR2379329
- I. Satake, Compactification de espaces quotients de Siegel II, Séminaire Cartan (1957/58), 1-10, E. N. S.
- I. Satake, L’opérateur , Séminaire Cartan (1957/58), 1-18, E. N. S.
- I. Satake, Surjectivité globale de opérateur , Séminaire Cartan (1957/58), 1-17, E. N. S.
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, (1971), Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo Zbl0221.10029MR314766
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), 527-606 Zbl0012.19703MR1503238
- J.-L. Waldspurger, Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. Math. 50 (1978/79), 135-168 Zbl0393.10025MR517775
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.