Serre functors for Lie algebras and superalgebras
Volodymyr Mazorchuk[1]; Vanessa Miemietz[2]
- [1] Uppsala University Department of Mathematics Box 480 751 06, Uppsala (Sweden)
- [2] University of East Anglia School of Mathematics Norwich NR4 7TJ (United Kingdom)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 47-75
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMazorchuk, Volodymyr, and Miemietz, Vanessa. "Serre functors for Lie algebras and superalgebras." Annales de l’institut Fourier 62.1 (2012): 47-75. <http://eudml.org/doc/251081>.
@article{Mazorchuk2012,
abstract = {We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category $\mathcal\{O\}$ associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category $\mathcal\{O\}$ and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic projective-injective module in (parabolic) category $\mathcal\{O\}$ for classical Lie superalgebras is symmetric. As a special case we obtain that in these cases the algebras describing blocks of the category of finite dimensional modules are symmetric. We also compute the latter algebras for the superalgebra $\mathfrak\{q\}(2)$.},
affiliation = {Uppsala University Department of Mathematics Box 480 751 06, Uppsala (Sweden); University of East Anglia School of Mathematics Norwich NR4 7TJ (United Kingdom)},
author = {Mazorchuk, Volodymyr, Miemietz, Vanessa},
journal = {Annales de l’institut Fourier},
keywords = {Lie superalgebra; module; Harish-Chandra bimodule; Serre functor; quiver; category $\mathcal\{O\}$; category },
language = {eng},
number = {1},
pages = {47-75},
publisher = {Association des Annales de l’institut Fourier},
title = {Serre functors for Lie algebras and superalgebras},
url = {http://eudml.org/doc/251081},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Mazorchuk, Volodymyr
AU - Miemietz, Vanessa
TI - Serre functors for Lie algebras and superalgebras
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 47
EP - 75
AB - We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category $\mathcal{O}$ associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category $\mathcal{O}$ and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic projective-injective module in (parabolic) category $\mathcal{O}$ for classical Lie superalgebras is symmetric. As a special case we obtain that in these cases the algebras describing blocks of the category of finite dimensional modules are symmetric. We also compute the latter algebras for the superalgebra $\mathfrak{q}(2)$.
LA - eng
KW - Lie superalgebra; module; Harish-Chandra bimodule; Serre functor; quiver; category $\mathcal{O}$; category
UR - http://eudml.org/doc/251081
ER -
References
top- A. Beilinson, R. Bezrukavnikov, I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547-557, 782 Zbl1075.14015MR2119139
- J. N. Bernstein, S. I. Gel’fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285 Zbl0445.17006MR581584
- Brian D. Boe, Jonathan R. Kujawa, Daniel K. Nakano, Complexity and module varieties for classical Lie superalgebras Zbl1236.17031MR2764876
- A. I. Bondal, M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 1183-1205, 1337 Zbl0703.14011MR1039961
- Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra , J. Amer. Math. Soc. 16 (2003), 185-231 Zbl1050.17004MR1937204
- Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra , Adv. Math. 182 (2004), 28-77 Zbl1048.17003MR2028496
- Jonathan Brundan, Tilting modules for Lie superalgebras, Comm. Algebra 32 (2004), 2251-2268 Zbl1077.17006MR2100468
- Jonathan Brundan, Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra. IV. The general linear supergroup Zbl1243.17004
- Shun-Jen Cheng, Ngau Lam, Weiqiang Wang, Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Inv. Math. 183 (2011), 189-244 Zbl1246.17007MR2755062
- Anders Frisk, Typical blocks of the category for the queer Lie superalgebra, J. Algebra Appl. 6 (2007), 731-778 Zbl1236.17009MR2355618
- Anders Frisk, Volodymyr Mazorchuk, Regular strongly typical blocks of , Comm. Math. Phys. 291 (2009), 533-542 Zbl1269.17005MR2530171
- Maria Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier (Grenoble) 50 (2000), 1745-1764 (2001) Zbl1063.17006MR1817382
- Maria Gorelik, Annihilation theorem and separation theorem for basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), 113-165 (electronic) Zbl0985.17010MR1862799
- Maria Gorelik, Strongly typical representations of the basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), 167-184 (electronic) Zbl0985.17011MR1862800
- Maria Gorelik, Shapovalov determinants of -type Lie superalgebras, IMRP Int. Math. Res. Pap. (2006) Zbl1178.17007MR2282179
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, 119 (1988), Cambridge University Press, Cambridge Zbl0635.16017MR935124
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category , 94 (2008), American Mathematical Society, Providence, RI Zbl1177.17001MR2428237
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, 3 (1983), Springer-Verlag, Berlin Zbl0541.17001MR721170
- Johan Kåhrström, Volodymyr Mazorchuk, A new approach to Kostant’s problem, Algebra Number Theory 4 (2010), 231-254 Zbl1209.17009MR2602666
- Oleksandr Khomenko, Categories with projective functors, Proc. London Math. Soc. (3) 90 (2005), 711-737 Zbl1063.17005MR2137828
- Oleksandr Khomenko, Volodymyr Mazorchuk, On Arkhipov’s and Enright’s functors, Math. Z. 249 (2005), 357-386 Zbl1103.17002MR2115448
- Volodymyr Mazorchuk, Classification of simple -supermodules, Tohoku Math. J. (2) 62 (2010), 401-426 Zbl1276.17005MR2742017
- Volodymyr Mazorchuk, Some homological properties of the category . II, Represent. Theory 14 (2010), 249-263 Zbl1200.16013MR2602033
- Volodymyr Mazorchuk, Serge Ovsienko, Catharina Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), 1129-1172 Zbl1229.16018MR2457393
- Volodymyr Mazorchuk, Catharina Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), 1363-1426 Zbl1234.17007MR2450613
- Volodymyr Mazorchuk, Catharina Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine Angew. Math. 616 (2008), 131-165 Zbl1235.16013MR2369489
- Dragan Miličić, Wolfgang Soergel, The composition series of modules induced from Whittaker modules, Comment. Math. Helv. 72 (1997), 503-520 Zbl0956.17004MR1600134
- Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), 252-268 Zbl0799.17008MR1149625
- I. Penkov, V. Serganova, Characters of irreducible -modules and cohomology of for the Lie supergroup , J. Math. Sci. (New York) 84 (1997), 1382-1412 Zbl0920.17003MR1465520
- Ivan Penkov, Vera Serganova, Characters of finite-dimensional irreducible -modules, Lett. Math. Phys. 40 (1997), 147-158 Zbl0892.17006MR1463616
- Alvany Rocha-Caridi, Splitting criteria for -modules induced from a parabolic and the Berňsteĭn-Gelfand-Gelfand resolution of a finite-dimensional, irreducible -module, Trans. Amer. Math. Soc. 262 (1980), 335-366 Zbl0449.17008MR586721
- Leonard L. Scott, Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) 47 (1987), 271-281, Amer. Math. Soc., Providence, RI Zbl0659.20038MR933417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.