Serre functors for Lie algebras and superalgebras

Volodymyr Mazorchuk[1]; Vanessa Miemietz[2]

  • [1] Uppsala University Department of Mathematics Box 480 751 06, Uppsala (Sweden)
  • [2] University of East Anglia School of Mathematics Norwich NR4 7TJ (United Kingdom)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 47-75
  • ISSN: 0373-0956

Abstract

top
We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category 𝒪 associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category 𝒪 and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic projective-injective module in (parabolic) category  𝒪 for classical Lie superalgebras is symmetric. As a special case we obtain that in these cases the algebras describing blocks of the category of finite dimensional modules are symmetric. We also compute the latter algebras for the superalgebra  𝔮 ( 2 ) .

How to cite

top

Mazorchuk, Volodymyr, and Miemietz, Vanessa. "Serre functors for Lie algebras and superalgebras." Annales de l’institut Fourier 62.1 (2012): 47-75. <http://eudml.org/doc/251081>.

@article{Mazorchuk2012,
abstract = {We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category $\mathcal\{O\}$ associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category $\mathcal\{O\}$ and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic projective-injective module in (parabolic) category $\mathcal\{O\}$ for classical Lie superalgebras is symmetric. As a special case we obtain that in these cases the algebras describing blocks of the category of finite dimensional modules are symmetric. We also compute the latter algebras for the superalgebra $\mathfrak\{q\}(2)$.},
affiliation = {Uppsala University Department of Mathematics Box 480 751 06, Uppsala (Sweden); University of East Anglia School of Mathematics Norwich NR4 7TJ (United Kingdom)},
author = {Mazorchuk, Volodymyr, Miemietz, Vanessa},
journal = {Annales de l’institut Fourier},
keywords = {Lie superalgebra; module; Harish-Chandra bimodule; Serre functor; quiver; category $\mathcal\{O\}$; category },
language = {eng},
number = {1},
pages = {47-75},
publisher = {Association des Annales de l’institut Fourier},
title = {Serre functors for Lie algebras and superalgebras},
url = {http://eudml.org/doc/251081},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Mazorchuk, Volodymyr
AU - Miemietz, Vanessa
TI - Serre functors for Lie algebras and superalgebras
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 47
EP - 75
AB - We propose a new realization, using Harish-Chandra bimodules, of the Serre functor for the BGG category $\mathcal{O}$ associated to a semi-simple complex finite dimensional Lie algebra. We further show that our realization carries over to classical Lie superalgebras in many cases. Along the way we prove that category $\mathcal{O}$ and its parabolic generalizations for classical Lie superalgebras are categories with full projective functors. As an application we prove that in many cases the endomorphism algebra of the basic projective-injective module in (parabolic) category $\mathcal{O}$ for classical Lie superalgebras is symmetric. As a special case we obtain that in these cases the algebras describing blocks of the category of finite dimensional modules are symmetric. We also compute the latter algebras for the superalgebra $\mathfrak{q}(2)$.
LA - eng
KW - Lie superalgebra; module; Harish-Chandra bimodule; Serre functor; quiver; category $\mathcal{O}$; category
UR - http://eudml.org/doc/251081
ER -

References

top
  1. A. Beilinson, R. Bezrukavnikov, I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), 547-557, 782 Zbl1075.14015MR2119139
  2. J. N. Bernstein, S. I. Gel’fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285 Zbl0445.17006MR581584
  3. Brian D. Boe, Jonathan R. Kujawa, Daniel K. Nakano, Complexity and module varieties for classical Lie superalgebras Zbl1236.17031MR2764876
  4. A. I. Bondal, M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 1183-1205, 1337 Zbl0703.14011MR1039961
  5. Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤 𝔩 ( m | n ) , J. Amer. Math. Soc. 16 (2003), 185-231 Zbl1050.17004MR1937204
  6. Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔮 ( n ) , Adv. Math. 182 (2004), 28-77 Zbl1048.17003MR2028496
  7. Jonathan Brundan, Tilting modules for Lie superalgebras, Comm. Algebra 32 (2004), 2251-2268 Zbl1077.17006MR2100468
  8. Jonathan Brundan, Catharina Stroppel, Highest weight categories arising from Khovanov’s diagram algebra. IV. The general linear supergroup Zbl1243.17004
  9. Shun-Jen Cheng, Ngau Lam, Weiqiang Wang, Super duality and irreducible characters of ortho-symplectic Lie superalgebras, Inv. Math. 183 (2011), 189-244 Zbl1246.17007MR2755062
  10. Anders Frisk, Typical blocks of the category 𝒪 for the queer Lie superalgebra, J. Algebra Appl. 6 (2007), 731-778 Zbl1236.17009MR2355618
  11. Anders Frisk, Volodymyr Mazorchuk, Regular strongly typical blocks of 𝒪 𝔮 , Comm. Math. Phys. 291 (2009), 533-542 Zbl1269.17005MR2530171
  12. Maria Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier (Grenoble) 50 (2000), 1745-1764 (2001) Zbl1063.17006MR1817382
  13. Maria Gorelik, Annihilation theorem and separation theorem for basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), 113-165 (electronic) Zbl0985.17010MR1862799
  14. Maria Gorelik, Strongly typical representations of the basic classical Lie superalgebras, J. Amer. Math. Soc. 15 (2002), 167-184 (electronic) Zbl0985.17011MR1862800
  15. Maria Gorelik, Shapovalov determinants of Q -type Lie superalgebras, IMRP Int. Math. Res. Pap. (2006) Zbl1178.17007MR2282179
  16. Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, 119 (1988), Cambridge University Press, Cambridge Zbl0635.16017MR935124
  17. James E. Humphreys, Representations of semisimple Lie algebras in the BGG category 𝒪 , 94 (2008), American Mathematical Society, Providence, RI Zbl1177.17001MR2428237
  18. Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, 3 (1983), Springer-Verlag, Berlin Zbl0541.17001MR721170
  19. Johan Kåhrström, Volodymyr Mazorchuk, A new approach to Kostant’s problem, Algebra Number Theory 4 (2010), 231-254 Zbl1209.17009MR2602666
  20. Oleksandr Khomenko, Categories with projective functors, Proc. London Math. Soc. (3) 90 (2005), 711-737 Zbl1063.17005MR2137828
  21. Oleksandr Khomenko, Volodymyr Mazorchuk, On Arkhipov’s and Enright’s functors, Math. Z. 249 (2005), 357-386 Zbl1103.17002MR2115448
  22. Volodymyr Mazorchuk, Classification of simple 𝔮 2 -supermodules, Tohoku Math. J. (2) 62 (2010), 401-426 Zbl1276.17005MR2742017
  23. Volodymyr Mazorchuk, Some homological properties of the category 𝒪 . II, Represent. Theory 14 (2010), 249-263 Zbl1200.16013MR2602033
  24. Volodymyr Mazorchuk, Serge Ovsienko, Catharina Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), 1129-1172 Zbl1229.16018MR2457393
  25. Volodymyr Mazorchuk, Catharina Stroppel, Categorification of (induced) cell modules and the rough structure of generalised Verma modules, Adv. Math. 219 (2008), 1363-1426 Zbl1234.17007MR2450613
  26. Volodymyr Mazorchuk, Catharina Stroppel, Projective-injective modules, Serre functors and symmetric algebras, J. Reine Angew. Math. 616 (2008), 131-165 Zbl1235.16013MR2369489
  27. Dragan Miličić, Wolfgang Soergel, The composition series of modules induced from Whittaker modules, Comment. Math. Helv. 72 (1997), 503-520 Zbl0956.17004MR1600134
  28. Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), 252-268 Zbl0799.17008MR1149625
  29. I. Penkov, V. Serganova, Characters of irreducible G -modules and cohomology of G / P for the Lie supergroup G = Q ( N ) , J. Math. Sci. (New York) 84 (1997), 1382-1412 Zbl0920.17003MR1465520
  30. Ivan Penkov, Vera Serganova, Characters of finite-dimensional irreducible 𝔮 ( n ) -modules, Lett. Math. Phys. 40 (1997), 147-158 Zbl0892.17006MR1463616
  31. Alvany Rocha-Caridi, Splitting criteria for 𝔤 -modules induced from a parabolic and the Berňsteĭn-Gel fand-Gel fand resolution of a finite-dimensional, irreducible 𝔤 -module, Trans. Amer. Math. Soc. 262 (1980), 335-366 Zbl0449.17008MR586721
  32. Leonard L. Scott, Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) 47 (1987), 271-281, Amer. Math. Soc., Providence, RI Zbl0659.20038MR933417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.