Sensitivity analysis of a bilinear optimal control problem
- [1] Laboratoire d’Analyse Non Linéaire et Géométrie (EA 2151) Université d’Avignon et des Pays de Vaucluse 33 rue Louis Pasteur 84018 AVIGNON CEDEX et Iufm de Paris Université Paris-Sorbonne (Paris IV) 10 rue Molitor 75016 PARIS CEDEX FRANCE
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 177-196
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Addou, A. Benbrik, Existence and uniqueness of optimal control for a distributed-parameter bilinear system, J. Dynam. Control Systems 8 (2002), 141-152 Zbl1036.49007MR1896168
- V. Barbu, Th. Precupanu, Convexity and optimization in Banach spaces, 10 (1986), D. Reidel Publishing Co., Dordrecht Zbl0594.49001MR860772
- J. F. Bonnans, Bilinear optimal control of the velocity term in a Kirchhoff plate equation, J. Math. Anal. Appl. 238 (1999), 451-467 Zbl0936.49003MR1715493
- J. F. Bonnans, Optimisation continue, (2006), Dunod, Paris
- J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, (2000), Springer-Verlag, New York Zbl0966.49001MR1756264
- M. E. Bradley, S. Lenhart, J. Yong, Bilinear optimal control of the velocity term in a Kirchhoff plate equation, J. Math. Anal. Appl. 238 (1999), 451-467 Zbl0936.49003MR1715493
- H. Brézis, Analyse fonctionnelle, (1983), Masson, Paris Zbl0511.46001
- C. Bruni, G. DiPillo, G. Koch, Bilinear systems : an appealing class of “nearly linear” systems in theory and applications, IEEE Trans. Automatic Control AC-19 (1974), 334-348 Zbl0285.93015MR414174
- J.-M. Clérin, Problèmes de contrôle optimal du type bilinéaire gouvernés par des équations aux dérivées partielles d’évolution, (2009), LANLG, Université d’Avignon
- J.-M. Clérin, Équations d’État Bien Posées en Contrôle Bilinéaire, Rev. Roumaine Math. Pures et Appl. 56 (2011), 115-136 (electronic) Zbl1274.34178
- I. M. Gel’fand, N. Ya. Vilenkin, Generalized functions. Vol. 4 : Applications of harmonic analysis, (1964), Academic Press, New York Zbl0144.17202MR173945
- R. Griesse, B. Vexler, Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization, SIAM J. Sci. Comput. 29 (2007), 22-48 (electronic) Zbl05240385MR2285881
- K. Ito, K. Kunisch, Augmented Lagrangian-SQP-methods in Hilbert spaces and application to control in the coefficients problems, SIAM J. Optim. 6 (1996), 96-125 Zbl0846.65026MR1377727
- K. Ito, K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim. 46 (2007), 274-287 (electronic) Zbl1136.35089MR2299629
- A. Y. Khapalov, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term : a qualitative approach, SIAM J. Control Optim. 41 (2003), 1886-1900 (electronic) Zbl1041.93026MR1972539
- H. Maurer, J. Zowe, First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math. Programming 16 (1979), 98-110 Zbl0398.90109MR517762
- D. Trentin, J.-L. Guyaner, Vibration of a master plate with attached masses using modal sampling method, J. Acoust. Soc. Am. 96 (1994), 235-245
- Y.-Y. Yu, Vibrations of elastic plates, (1995), Springer