RSK bases and Kazhdan-Lusztig cells

K. N. Raghavan[1]; Preena Samuel[1]; K. V. Subrahmanyam[2]

  • [1] Institute of Mathematical Sciences C. I. T. Campus Chennai 600 113 (India)
  • [2] Chennai Mathematical Institute Plot No. H1, SIPCOT IT Park Padur Post, Siruseri 603 103 Tamilnadu (India)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 525-569
  • ISSN: 0373-0956

Abstract

top
From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.

How to cite

top

Raghavan, K. N., Samuel, Preena, and Subrahmanyam, K. V.. "RSK bases and Kazhdan-Lusztig cells." Annales de l’institut Fourier 62.2 (2012): 525-569. <http://eudml.org/doc/251104>.

@article{Raghavan2012,
abstract = {From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.},
affiliation = {Institute of Mathematical Sciences C. I. T. Campus Chennai 600 113 (India); Institute of Mathematical Sciences C. I. T. Campus Chennai 600 113 (India); Chennai Mathematical Institute Plot No. H1, SIPCOT IT Park Padur Post, Siruseri 603 103 Tamilnadu (India)},
author = {Raghavan, K. N., Samuel, Preena, Subrahmanyam, K. V.},
journal = {Annales de l’institut Fourier},
keywords = {Symmetric group; Hecke algebra; Kazhdan-Lusztig basis; RSK correspondence; symmetric group},
language = {eng},
number = {2},
pages = {525-569},
publisher = {Association des Annales de l’institut Fourier},
title = {RSK bases and Kazhdan-Lusztig cells},
url = {http://eudml.org/doc/251104},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Raghavan, K. N.
AU - Samuel, Preena
AU - Subrahmanyam, K. V.
TI - RSK bases and Kazhdan-Lusztig cells
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 525
EP - 569
AB - From the combinatorial characterizations of the right, left, and two-sided Kazhdan-Lusztig cells of the symmetric group, “ RSK bases” are constructed for certain quotients by two-sided ideals of the group ring and the Hecke algebra. Applications to invariant theory, over various base rings, of the general linear group and representation theory, both ordinary and modular, of the symmetric group are discussed.
LA - eng
KW - Symmetric group; Hecke algebra; Kazhdan-Lusztig basis; RSK correspondence; symmetric group
UR - http://eudml.org/doc/251104
ER -

References

top
  1. Susumu Ariki, Robinson-Schensted correspondence and left cells, Combinatorial methods in representation theory (Kyoto, 1998) 28 (2000), 1-20, Kinokuniya, Tokyo Zbl0986.05097MR1855588
  2. N. Bourbaki, Éléments de mathématique, Fasc. XXIII, (1973), Hermann, Paris Zbl0281.00006MR417224
  3. Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (2002), Springer-Verlag, Berlin Zbl0672.22001MR1890629
  4. C. de Concini, C. Procesi, A characteristic free approach to invariant theory, Advances in Math. 21 (1976), 330-354 Zbl0347.20025MR422314
  5. Sumanth Datt, Vijay Kodiyalam, V. S. Sunder, Complete invariants for complex semisimple Hopf algebras, Math. Res. Lett. 10 (2003), 571-586 Zbl1075.16017MR2024716
  6. Richard Dipper, Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), 20-52 Zbl0587.20007MR812444
  7. Richard Dipper, Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), 57-82 Zbl0615.20009MR872250
  8. Richard Dipper, Gordon James, The q -Schur algebra, Proc. London Math. Soc. (3) 59 (1989), 23-50 Zbl0711.20007MR997250
  9. Stephen Doty, Kathryn Nyman, Annihilators of permutation modules, Quart. J. Math. 00 (2009), 1-16 
  10. J. Du, B. Parshall, L. Scott, Cells and q -Schur algebras, Transform. Groups 3 (1998), 33-49 Zbl0912.20008MR1603810
  11. Matthew Fayers, Sinéad Lyle, Some reducible Specht modules for Iwahori-Hecke algebras of type A with q = - 1  Zbl1176.20004
  12. J. S. Frame, G. de B. Robinson, R. M. Thrall, The hook graphs of the symmetric groups, Canadian J. Math. 6 (1954), 316-324 Zbl0055.25404MR62127
  13. William Fulton, Young tableaux, 35 (1997), Cambridge University Press, Cambridge Zbl0878.14034MR1464693
  14. A. M. Garsia, T. J. McLarnan, Relations between Young’s natural and the Kazhdan-Lusztig representations of S n , Adv. in Math. 69 (1988), 32-92 Zbl0657.20014MR937317
  15. Meinolf Geck, Kazhdan-Lusztig cells and the Murphy basis, Proc. London Math. Soc. (3) 93 (2006), 635-665 Zbl1158.20001MR2266962
  16. Meinolf Geck, Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, 21 (2000), The Clarendon Press Oxford University Press, New York Zbl0996.20004MR1778802
  17. J. J. Graham, G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34 Zbl0853.20029MR1376244
  18. G. D. James, On a conjecture of Carter concerning irreducible Specht modules, Math. Proc. Cambridge Philos. Soc. 83 (1978), 11-17 Zbl0385.05027MR463281
  19. Gordon James, Andrew Mathas, A q -analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), 241-274 Zbl0869.20004MR1425323
  20. David Kazhdan, George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184 Zbl0499.20035MR560412
  21. G. Lusztig, Hecke algebras with unequal parameters, 18 (2003), American Mathematical Society, Providence, RI Zbl1051.20003MR1974442
  22. George Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), 490-498 Zbl0465.20042MR630610
  23. Andrew Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, 15 (1999), American Mathematical Society, Providence, RI Zbl0940.20018MR1711316
  24. T. P. McDonough, C. A. Pallikaros, On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras, J. Pure Appl. Algebra 203 (2005), 133-144 Zbl1090.20006MR2176656
  25. G. E. Murphy, The representations of Hecke algebras of type A n , J. Algebra 173 (1995), 97-121 Zbl0829.20022MR1327362
  26. Hiroshi Naruse, On an isomorphism between Specht module and left cell of 𝔖 n , Tokyo J. Math. 12 (1989), 247-267 Zbl0761.20008MR1030495
  27. C. Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976), 306-381 Zbl0331.15021MR419491
  28. K N Raghavan, Preena Samuel, K V Subrahmanyam, KRS bases for rings of invariants and for endomorphism spaces of irreducible modules, (2009) 
  29. Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723-756 Zbl0311.16016MR506414
  30. Bruce E. Sagan, The symmetric group, 203 (2001), Springer-Verlag, New York Zbl0964.05070MR1824028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.