Mutating seeds: types and .
Ibrahim Assem[1]; Christophe Reutenauer[2]
- [1] Département de mathématiques, Université de Sherbrooke Sherbrooke (Québec) J1K2R1,Canada
- [2] Laboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal Case postale 8888, succursale Centre-ville Montréal (Québec) H3C 3P8, Canada
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 29-73
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAssem, Ibrahim, and Reutenauer, Christophe. "Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.." Annales mathématiques Blaise Pascal 19.1 (2012): 29-73. <http://eudml.org/doc/251110>.
@article{Assem2012,
abstract = {In the cases $\mathbb\{A\}$ and $\widetilde\{\mathbb\{A\}\}$, we describe the seeds obtained by sequences of mutations from an initial seed. In the $\widetilde\{\mathbb\{A\}\}$ case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.},
affiliation = {Département de mathématiques, Université de Sherbrooke Sherbrooke (Québec) J1K2R1,Canada; Laboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal Case postale 8888, succursale Centre-ville Montréal (Québec) H3C 3P8, Canada},
author = {Assem, Ibrahim, Reutenauer, Christophe},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Cluster algebras; mutations; seeds; quivers; cluster algebras},
language = {eng},
month = {1},
number = {1},
pages = {29-73},
publisher = {Annales mathématiques Blaise Pascal},
title = {Mutating seeds: types $\mathbb\{A\}$ and $\widetilde\{\mathbb\{A\}\}$.},
url = {http://eudml.org/doc/251110},
volume = {19},
year = {2012},
}
TY - JOUR
AU - Assem, Ibrahim
AU - Reutenauer, Christophe
TI - Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 29
EP - 73
AB - In the cases $\mathbb{A}$ and $\widetilde{\mathbb{A}}$, we describe the seeds obtained by sequences of mutations from an initial seed. In the $\widetilde{\mathbb{A}}$ case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.
LA - eng
KW - Cluster algebras; mutations; seeds; quivers; cluster algebras
UR - http://eudml.org/doc/251110
ER -
References
top- Eiichi Abe, Hopf algebras, 74 (1980), Cambridge University Press, Cambridge Zbl0476.16008MR594432
- I. Assem, T. Brüstle, R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151-162 Zbl1182.16009MR2409188
- Ibrahim Assem, Thomas Brüstle, Gabrielle Charbonneau-Jodoin, Pierre-Guy Plamondon, Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2010), 201-229 Zbl1242.16011MR2592019
- Ibrahim Assem, Grégoire Dupont, Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), 2322-2340 Zbl1317.13049MR2793939
- Ibrahim Assem, Grégoire Dupont, Ralf Schiffler, David Smith, Friezes, strings and cluster variables, Glasg. Math. J. 54 (2012), 27-60 Zbl1280.16015MR2862382
- Ibrahim Assem, Christophe Reutenauer, David Smith, Friezes, Adv. Math. 225 (2010), 3134-3165 Zbl1275.13017MR2729004
- J. Bastian, Mutation classes of -quivers and derived equivalence classification of cluster tilted algebras of type Zbl1263.16019
- K. Baur, R. March, Categorification of a frieze pattern determinant Zbl1239.05031
- François Bergeron, Christophe Reutenauer, -tilings of the plane, Illinois J. Math. 54 (2010), 263-300 Zbl1236.13018MR2776996
- Jean Berstel, Christophe Reutenauer, Noncommutative rational series with applications, 137 (2011), Cambridge University Press, Cambridge Zbl1250.68007MR2760561
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
- Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), 143-177 Zbl1193.16016MR2365411
- Aslak Bakke Buan, Dagfinn F. Vatne, Derived equivalence classification for cluster-tilted algebras of type , J. Algebra 319 (2008), 2723-2738 Zbl1155.16010MR2397404
- Philippe Caldero, Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
- Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211 Zbl1141.18012MR2385670
- P. M. Cohn, Free rings and their relations, 19 (1985), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London Zbl0659.16001MR800091
- J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94 Zbl0285.05028MR461269
- J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183 Zbl0288.05021MR461270
- H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310 Zbl0217.18101MR286771
- Sorin Dăscălescu, Constantin Năstăsescu, Şerban Raianu, Hopf algebras, 235 (2001), Marcel Dekker Inc., New York MR1786197
- G. Dupont, Cluster multiplication in regular components via generalized Chebyshev polynomials Zbl1253.16012
- G. Dupont, Generalized Chebyshev Polynomials and Positivity for Regular Cluster Characters Zbl1252.13012
- G. Dupont, Quantized Chebyshev polynomials and cluster characters with coefficients, J. Algebraic Combin. 31 (2010), 501-532 Zbl1231.05290MR2639723
- Sergey Fomin, Michael Shapiro, Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146 Zbl1263.13023MR2448067
- Sergey Fomin, Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic) Zbl1021.16017MR1887642
- Sergey Fomin, Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
- A. Fordy, R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences Zbl1272.13020
- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete mathematics, (1994), Addison-Wesley Publishing Company, Reading, MA Zbl0668.00003MR1397498
- Dieter Happel, Claus Michael Ringel, Construction of tilted algebras, Representations of algebras (Puebla, 1980) 903 (1981), 125-144, Springer, Berlin Zbl0503.16025MR654707
- Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, 75 (1981), Springer-Verlag, New York Zbl0589.20025MR620024
- Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated categories 375 (2010), 76-160, Cambridge Univ. Press, Cambridge Zbl1215.16012MR2681708
- Moss E. Sweedler, Hopf algebras, (1969), W. A. Benjamin, Inc., New York Zbl0194.32901MR252485
- Ernest B. Vinberg, Linear representations of groups, (2010), Birkhäuser/Springer, New York Zbl1206.20008MR2761806
- J.H.M. Wedderburn, Non-commutative domains of integrity, J. Reine Angew. Math. 167 (1932), 129-141 Zbl0003.20103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.