Mutating seeds: types 𝔸 and 𝔸 ˜ .

Ibrahim Assem[1]; Christophe Reutenauer[2]

  • [1] Département de mathématiques, Université de Sherbrooke Sherbrooke (Québec) J1K2R1,Canada
  • [2] Laboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal Case postale 8888, succursale Centre-ville Montréal (Québec) H3C 3P8, Canada

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 1, page 29-73
  • ISSN: 1259-1734

Abstract

top
In the cases 𝔸 and 𝔸 ˜ , we describe the seeds obtained by sequences of mutations from an initial seed. In the 𝔸 ˜ case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.

How to cite

top

Assem, Ibrahim, and Reutenauer, Christophe. "Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.." Annales mathématiques Blaise Pascal 19.1 (2012): 29-73. <http://eudml.org/doc/251110>.

@article{Assem2012,
abstract = {In the cases $\mathbb\{A\}$ and $\widetilde\{\mathbb\{A\}\}$, we describe the seeds obtained by sequences of mutations from an initial seed. In the $\widetilde\{\mathbb\{A\}\}$ case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.},
affiliation = {Département de mathématiques, Université de Sherbrooke Sherbrooke (Québec) J1K2R1,Canada; Laboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal Case postale 8888, succursale Centre-ville Montréal (Québec) H3C 3P8, Canada},
author = {Assem, Ibrahim, Reutenauer, Christophe},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Cluster algebras; mutations; seeds; quivers; cluster algebras},
language = {eng},
month = {1},
number = {1},
pages = {29-73},
publisher = {Annales mathématiques Blaise Pascal},
title = {Mutating seeds: types $\mathbb\{A\}$ and $\widetilde\{\mathbb\{A\}\}$.},
url = {http://eudml.org/doc/251110},
volume = {19},
year = {2012},
}

TY - JOUR
AU - Assem, Ibrahim
AU - Reutenauer, Christophe
TI - Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 29
EP - 73
AB - In the cases $\mathbb{A}$ and $\widetilde{\mathbb{A}}$, we describe the seeds obtained by sequences of mutations from an initial seed. In the $\widetilde{\mathbb{A}}$ case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.
LA - eng
KW - Cluster algebras; mutations; seeds; quivers; cluster algebras
UR - http://eudml.org/doc/251110
ER -

References

top
  1. Eiichi Abe, Hopf algebras, 74 (1980), Cambridge University Press, Cambridge Zbl0476.16008MR594432
  2. I. Assem, T. Brüstle, R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151-162 Zbl1182.16009MR2409188
  3. Ibrahim Assem, Thomas Brüstle, Gabrielle Charbonneau-Jodoin, Pierre-Guy Plamondon, Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2010), 201-229 Zbl1242.16011MR2592019
  4. Ibrahim Assem, Grégoire Dupont, Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), 2322-2340 Zbl1317.13049MR2793939
  5. Ibrahim Assem, Grégoire Dupont, Ralf Schiffler, David Smith, Friezes, strings and cluster variables, Glasg. Math. J. 54 (2012), 27-60 Zbl1280.16015MR2862382
  6. Ibrahim Assem, Christophe Reutenauer, David Smith, Friezes, Adv. Math. 225 (2010), 3134-3165 Zbl1275.13017MR2729004
  7. J. Bastian, Mutation classes of A ˜ n -quivers and derived equivalence classification of cluster tilted algebras of type A ˜ n  Zbl1263.16019
  8. K. Baur, R. March, Categorification of a frieze pattern determinant Zbl1239.05031
  9. François Bergeron, Christophe Reutenauer, SL k -tilings of the plane, Illinois J. Math. 54 (2010), 263-300 Zbl1236.13018MR2776996
  10. Jean Berstel, Christophe Reutenauer, Noncommutative rational series with applications, 137 (2011), Cambridge University Press, Cambridge Zbl1250.68007MR2760561
  11. Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
  12. Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), 143-177 Zbl1193.16016MR2365411
  13. Aslak Bakke Buan, Dagfinn F. Vatne, Derived equivalence classification for cluster-tilted algebras of type A n , J. Algebra 319 (2008), 2723-2738 Zbl1155.16010MR2397404
  14. Philippe Caldero, Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
  15. Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211 Zbl1141.18012MR2385670
  16. P. M. Cohn, Free rings and their relations, 19 (1985), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London Zbl0659.16001MR800091
  17. J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94 Zbl0285.05028MR461269
  18. J. H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183 Zbl0288.05021MR461270
  19. H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310 Zbl0217.18101MR286771
  20. Sorin Dăscălescu, Constantin Năstăsescu, Şerban Raianu, Hopf algebras, 235 (2001), Marcel Dekker Inc., New York MR1786197
  21. G. Dupont, Cluster multiplication in regular components via generalized Chebyshev polynomials Zbl1253.16012
  22. G. Dupont, Generalized Chebyshev Polynomials and Positivity for Regular Cluster Characters Zbl1252.13012
  23. G. Dupont, Quantized Chebyshev polynomials and cluster characters with coefficients, J. Algebraic Combin. 31 (2010), 501-532 Zbl1231.05290MR2639723
  24. Sergey Fomin, Michael Shapiro, Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146 Zbl1263.13023MR2448067
  25. Sergey Fomin, Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic) Zbl1021.16017MR1887642
  26. Sergey Fomin, Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
  27. A. Fordy, R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences Zbl1272.13020
  28. Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete mathematics, (1994), Addison-Wesley Publishing Company, Reading, MA Zbl0668.00003MR1397498
  29. Dieter Happel, Claus Michael Ringel, Construction of tilted algebras, Representations of algebras (Puebla, 1980) 903 (1981), 125-144, Springer, Berlin Zbl0503.16025MR654707
  30. Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, 75 (1981), Springer-Verlag, New York Zbl0589.20025MR620024
  31. Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated categories 375 (2010), 76-160, Cambridge Univ. Press, Cambridge Zbl1215.16012MR2681708
  32. Moss E. Sweedler, Hopf algebras, (1969), W. A. Benjamin, Inc., New York Zbl0194.32901MR252485
  33. Ernest B. Vinberg, Linear representations of groups, (2010), Birkhäuser/Springer, New York Zbl1206.20008MR2761806
  34. J.H.M. Wedderburn, Non-commutative domains of integrity, J. Reine Angew. Math. 167 (1932), 129-141 Zbl0003.20103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.