Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions
Dmitri V. Alekseevsky[1]; Ricardo Alonso-Blanco[2]; Gianni Manno[3]; Fabrizio Pugliese[4]
- [1] University of Edinburgh School of Mathematics and Maxwell Institute for Mathematical Sciences The Kings Buildings, JCMB Mayfield Road Edinburgh, EH9 3JZ (UK)
- [2] Universidad de Salamanca Departamento de Matemáticas plaza de la Merced 1-4 37008 Salamanca (Spain)
- [3] Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni via Cozzi 53 20125 Milano (Italy)
- [4] Università di Salerno Dipartimento di Matematica via Ponte don Melillo 84084 Fisciano (Italy)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 497-524
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Maks Akivis, Vladislav Goldberg, Conformal differential geometry and its generalizations, (1996), John Wiley & Sons Inc., New York Zbl0863.53002MR1406793
- R.J. Alonso-Blanco, G. Manno, F. Pugliese, Normal forms for Lagrangian distributions on 5-dimensional contact manifolds, Differential Geom. Appl. 27 (2009), 212-229 Zbl1162.53325MR2503974
- R.J. Alonso Blanco, Gianni Manno, Fabrizio Pugliese, Contact relative differential invariants for non generic parabolic Monge-Ampère equations, Acta Appl. Math. 101 (2008), 5-19 Zbl1154.35004MR2383541
- Guy Boillat, Le champ scalaire de Monge-Ampère, Norske Vid. Selsk. Forh. (Trondheim) 41 (1968), 78-81 Zbl0183.10402MR240472
- Guy Boillat, Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 805-808 Zbl0753.35107MR1139843
- B. Doubrov, E. V. Ferapontov, On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010), 1604-1616 Zbl1195.35109MR2661158
- Evgeny Vladimirovich Ferapontov, Lenos Hadjikos, Karima Robertovna Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. IMRN (2010), 496-535 Zbl1203.35215MR2587572
- Andrew Russell Forsyth, Theory of differential equations. 1. Exact equations and Pfaff’s problem; 2, 3. Ordinary equations, not linear; 4. Ordinary linear equations; 5, 6. Partial differential equations, (1959), Dover Publications Inc., New York Zbl0088.05802MR123757
- E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second ordre, 1 (1890), Gauthier-Villars, Paris
- E. Goursat, Sur les équations du second ordre à variables analogues à l’équation de Monge-Ampère, Bull. Soc. Math. France 27 (1899), 1-34 Zbl30.0326.01MR1504329
- Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0836.14001MR507725
- Alexei Kushner, Classification of Monge-Ampère equations, Differential equations: geometry, symmetries and integrability 5 (2009), 223-256, Springer-Verlag, Berlin Zbl1233.35005MR2562576
- Alexei Kushner, Valentin Lychagin, Vladimir Rubtsov, Contact geometry and non-linear differential equations, 101 (2007), Cambridge University Press, Cambridge Zbl1122.53044MR2352610
- P. D. Lax, A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations (1954), 167-190, Princeton University Press, Princeton, N. J. Zbl0128.09302MR67317
- V. Lyčagin, Contact geometry and second-order nonlinear differential equations, Uspekhi Mat. Nauk 34 (1979), 137-165 Zbl0405.58003MR525652
- Y. Machida, T. Morimoto, On decomposable Monge-Ampère equations, Lobachevskii J. Math. 3 (1999), 185-196 (electronic) Zbl0957.35010MR1743137
- Tohru Morimoto, Monge-Ampère equations viewed from contact geometry, Symplectic singularities and geometry of gauge fields (Warsaw, 1995) 39 (1997), 105-121, Polish Acad. Sci., Warsaw Zbl0879.35008MR1458653
- J. Muñoz Díaz, Ecuaciones diferenciales I, (1982)
- I. G. Petrovski, Lectures on partial differential equations, (1991)
- Tommaso Ruggeri, Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 445-449 (1974) Zbl0294.35013MR380066
- Georges Valiron, The classical differential geometry of curves and surfaces, (1986), Math Sci Press, Brookline, MA Zbl0611.53001MR869256