Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions
Dmitri V. Alekseevsky[1]; Ricardo Alonso-Blanco[2]; Gianni Manno[3]; Fabrizio Pugliese[4]
- [1] University of Edinburgh School of Mathematics and Maxwell Institute for Mathematical Sciences The Kings Buildings, JCMB Mayfield Road Edinburgh, EH9 3JZ (UK)
- [2] Universidad de Salamanca Departamento de Matemáticas plaza de la Merced 1-4 37008 Salamanca (Spain)
- [3] Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni via Cozzi 53 20125 Milano (Italy)
- [4] Università di Salerno Dipartimento di Matematica via Ponte don Melillo 84084 Fisciano (Italy)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 497-524
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlekseevsky, Dmitri V., et al. "Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions." Annales de l’institut Fourier 62.2 (2012): 497-524. <http://eudml.org/doc/251116>.
@article{Alekseevsky2012,
abstract = {We study the geometry of multidimensional scalar $2^\{nd\}$ order PDEs (i.e. PDEs with $n$ independent variables), viewed as hypersurfaces $\mathcal\{E\}$ in the Lagrangian Grassmann bundle $M^\{(1)\}$ over a $(2n+1)$-dimensional contact manifold $(M,\mathcal\{C\})$. We develop the theory of characteristics of $\mathcal\{E\}$ in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of $\mathcal\{E\}$. After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of type introduced by Goursat in 1899:\[ \det \Bigl \Vert \frac\{\partial ^\{2\} f\}\{\partial x^\{i\}\partial x^\{j\}\}-b\_\{ij\}\left( x,f,\nabla f\right) \Bigr \Vert =0. \]We show that any MAE of this class is associated with an $n$-dimensional subdistribution $\mathcal\{D\}$ of the contact distribution $\mathcal\{C\}$, and viceversa. We characterize these Goursat-type equations together with their intermediate integrals in terms of their characteristics and give a criterion of local contact equivalence. Finally, we develop a method to solve Cauchy problems for this kind of equations.},
affiliation = {University of Edinburgh School of Mathematics and Maxwell Institute for Mathematical Sciences The Kings Buildings, JCMB Mayfield Road Edinburgh, EH9 3JZ (UK); Universidad de Salamanca Departamento de Matemáticas plaza de la Merced 1-4 37008 Salamanca (Spain); Università di Milano-Bicocca Dipartimento di Matematica e Applicazioni via Cozzi 53 20125 Milano (Italy); Università di Salerno Dipartimento di Matematica via Ponte don Melillo 84084 Fisciano (Italy)},
author = {Alekseevsky, Dmitri V., Alonso-Blanco, Ricardo, Manno, Gianni, Pugliese, Fabrizio},
journal = {Annales de l’institut Fourier},
keywords = {Hypersurfaces of Lagrangian Grassmannians; contact geometry; subdistributions of a contact distribution; Monge-Ampère equations; characteristics; intermediate integrals; hypersurfaces of Lagrangian Grassmannians; subdistribution of a contact distribution},
language = {eng},
number = {2},
pages = {497-524},
publisher = {Association des Annales de l’institut Fourier},
title = {Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions},
url = {http://eudml.org/doc/251116},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Alekseevsky, Dmitri V.
AU - Alonso-Blanco, Ricardo
AU - Manno, Gianni
AU - Pugliese, Fabrizio
TI - Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 497
EP - 524
AB - We study the geometry of multidimensional scalar $2^{nd}$ order PDEs (i.e. PDEs with $n$ independent variables), viewed as hypersurfaces $\mathcal{E}$ in the Lagrangian Grassmann bundle $M^{(1)}$ over a $(2n+1)$-dimensional contact manifold $(M,\mathcal{C})$. We develop the theory of characteristics of $\mathcal{E}$ in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of $\mathcal{E}$. After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of type introduced by Goursat in 1899:\[ \det \Bigl \Vert \frac{\partial ^{2} f}{\partial x^{i}\partial x^{j}}-b_{ij}\left( x,f,\nabla f\right) \Bigr \Vert =0. \]We show that any MAE of this class is associated with an $n$-dimensional subdistribution $\mathcal{D}$ of the contact distribution $\mathcal{C}$, and viceversa. We characterize these Goursat-type equations together with their intermediate integrals in terms of their characteristics and give a criterion of local contact equivalence. Finally, we develop a method to solve Cauchy problems for this kind of equations.
LA - eng
KW - Hypersurfaces of Lagrangian Grassmannians; contact geometry; subdistributions of a contact distribution; Monge-Ampère equations; characteristics; intermediate integrals; hypersurfaces of Lagrangian Grassmannians; subdistribution of a contact distribution
UR - http://eudml.org/doc/251116
ER -
References
top- Maks Akivis, Vladislav Goldberg, Conformal differential geometry and its generalizations, (1996), John Wiley & Sons Inc., New York Zbl0863.53002MR1406793
- R.J. Alonso-Blanco, G. Manno, F. Pugliese, Normal forms for Lagrangian distributions on 5-dimensional contact manifolds, Differential Geom. Appl. 27 (2009), 212-229 Zbl1162.53325MR2503974
- R.J. Alonso Blanco, Gianni Manno, Fabrizio Pugliese, Contact relative differential invariants for non generic parabolic Monge-Ampère equations, Acta Appl. Math. 101 (2008), 5-19 Zbl1154.35004MR2383541
- Guy Boillat, Le champ scalaire de Monge-Ampère, Norske Vid. Selsk. Forh. (Trondheim) 41 (1968), 78-81 Zbl0183.10402MR240472
- Guy Boillat, Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 805-808 Zbl0753.35107MR1139843
- B. Doubrov, E. V. Ferapontov, On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010), 1604-1616 Zbl1195.35109MR2661158
- Evgeny Vladimirovich Ferapontov, Lenos Hadjikos, Karima Robertovna Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, Int. Math. Res. Not. IMRN (2010), 496-535 Zbl1203.35215MR2587572
- Andrew Russell Forsyth, Theory of differential equations. 1. Exact equations and Pfaff’s problem; 2, 3. Ordinary equations, not linear; 4. Ordinary linear equations; 5, 6. Partial differential equations, (1959), Dover Publications Inc., New York Zbl0088.05802MR123757
- E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second ordre, 1 (1890), Gauthier-Villars, Paris
- E. Goursat, Sur les équations du second ordre à variables analogues à l’équation de Monge-Ampère, Bull. Soc. Math. France 27 (1899), 1-34 Zbl30.0326.01MR1504329
- Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0836.14001MR507725
- Alexei Kushner, Classification of Monge-Ampère equations, Differential equations: geometry, symmetries and integrability 5 (2009), 223-256, Springer-Verlag, Berlin Zbl1233.35005MR2562576
- Alexei Kushner, Valentin Lychagin, Vladimir Rubtsov, Contact geometry and non-linear differential equations, 101 (2007), Cambridge University Press, Cambridge Zbl1122.53044MR2352610
- P. D. Lax, A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations (1954), 167-190, Princeton University Press, Princeton, N. J. Zbl0128.09302MR67317
- V. Lyčagin, Contact geometry and second-order nonlinear differential equations, Uspekhi Mat. Nauk 34 (1979), 137-165 Zbl0405.58003MR525652
- Y. Machida, T. Morimoto, On decomposable Monge-Ampère equations, Lobachevskii J. Math. 3 (1999), 185-196 (electronic) Zbl0957.35010MR1743137
- Tohru Morimoto, Monge-Ampère equations viewed from contact geometry, Symplectic singularities and geometry of gauge fields (Warsaw, 1995) 39 (1997), 105-121, Polish Acad. Sci., Warsaw Zbl0879.35008MR1458653
- J. Muñoz Díaz, Ecuaciones diferenciales I, (1982)
- I. G. Petrovski, Lectures on partial differential equations, (1991)
- Tommaso Ruggeri, Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 445-449 (1974) Zbl0294.35013MR380066
- Georges Valiron, The classical differential geometry of curves and surfaces, (1986), Math Sci Press, Brookline, MA Zbl0611.53001MR869256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.