Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians

Marius Măntoiu[1]

  • [1] Universidad de Chile, Facultad de Ciencias, Departamento de Matemáticas, Las Palmeras 3425, Casilla 653 Santiago, Chile

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1551-1580
  • ISSN: 0373-0956

Abstract

top
We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.

How to cite

top

Măntoiu, Marius. "Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians." Annales de l’institut Fourier 62.4 (2012): 1551-1580. <http://eudml.org/doc/251133>.

@article{Măntoiu2012,
abstract = {We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.},
affiliation = {Universidad de Chile, Facultad de Ciencias, Departamento de Matemáticas, Las Palmeras 3425, Casilla 653 Santiago, Chile},
author = {Măntoiu, Marius},
journal = {Annales de l’institut Fourier},
keywords = {Pseudodifferential operator; essential spectrum; random operator; semiclassical limit; noncommutative dynamical system; pseudodifferential operator},
language = {eng},
number = {4},
pages = {1551-1580},
publisher = {Association des Annales de l’institut Fourier},
title = {Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians},
url = {http://eudml.org/doc/251133},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Măntoiu, Marius
TI - Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1551
EP - 1580
AB - We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.
LA - eng
KW - Pseudodifferential operator; essential spectrum; random operator; semiclassical limit; noncommutative dynamical system; pseudodifferential operator
UR - http://eudml.org/doc/251133
ER -

References

top
  1. W. O. Amrein, A. Boutet de Monvel, V. Georgescu, C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, (1996), Birkhäuser, Basel Zbl0962.47500MR1388037
  2. N. Athmouni, M. Măntoiu, R. Purice, On the Continuity of Spectra for Families of Magnetic Pseudodifferential Operators, J. Math. Phys. 51, 083517 (2010) Zbl1312.81059MR2683559
  3. J. Bellissard, D.J.L. Herrmann, M. Zarrouati, Hull of Aperiodic Solids and Gap Labelling Theorems, Directions in Mathematical Quasicrystals 13 (2000), 207-259 Zbl0972.52014MR1798994
  4. R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, (1990), Birkhäuser Boston Inc., Boston, MA Zbl0717.60074MR1102675
  5. E. B. Davies, Decomposing the Essential Spectrum, J. Funct. Anal. 257 (2009), 506-536 Zbl1176.47001MR2527027
  6. K. de Leeuw, H. Mirkil, Translation-invariant function algebras on abelian groups, Bull. Soc. Math. France 88 (1960), 345-370 Zbl0093.12703MR121613
  7. G. B. Folland, Harmonic analysis in phase space, 122 (1989), Princeton University Press, Princeton, NJ Zbl0682.43001MR983366
  8. V. Georgescu, On the Structure of the Essential Spectrum of Elliptic Operators in Metric Spaces, J. Funct. Anal. 220 (2011), 1734-1765 Zbl1242.47052MR2754891
  9. V. Georgescu, A. Iftimovici, Crossed Products of C * -Algebras and Spectral Analysis of Quantum Hamiltonians, Commun. Math. Phys. 228 (2002), 519-530 Zbl1005.81026MR1918787
  10. V. Georgescu, A. Iftimovici, C * -Algebras of Quantum Hamiltonians, Operator Algebras and Mathematical Physics (Constanta, 2001) (2003), 123-167, Theta, Bucharest Zbl1247.46060MR2018228
  11. V. Georgescu, A. Iftimovici, Localizations at Infinity and Essential Spectrum of Quantum Hamiltonians. I. General Theory, Rev. Math. Phys. 18 (2006), 417-483 Zbl1109.47004MR2245367
  12. B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier 38 (1988), 95-112 Zbl0638.47047MR949012
  13. V. Iftimie, M. Măntoiu, R. Purice, Magnetic Pseudodifferential Operators, Publ. RIMS 43 (2007), 585-623 Zbl1165.35056MR2361789
  14. Y. Last, B. Simon, The Essential Spectrum of Schrödinger, Jacobi and CMV Operators, J. d’Analyse Math. 98 (2006), 183-220 Zbl1145.34052MR2254485
  15. R. Lauter, B. Monthubert, V. Nistor, Spectral Invariance for Certain Algebras of Pseudodifferential Operators, J. Inst. Math. Jussieu 4 (2005), 405-442 Zbl1088.35087MR2197064
  16. R. Lauter, V. Nistor, Analysis of Geometric Operators on Open Manifolds: a Groupoid Approach, Quantization of Singular Symplectic Quotients 198 (2001), 181-229, Birkhäuser, Basel Zbl1018.58009MR1938556
  17. M. Lein, M. Măntoiu, S. Richard, Magnetic Pseudodifferential Operators with Coefficients in C * -algebras, Publ. RIMS Kyoto Univ. 46 (2010), 595-628 Zbl1205.35349MR2791006
  18. M. Măntoiu, Compactifications, Dynamical Systems at Infinity and the Essential Spectrum of Generalized Schödinger Operators, J. reine angew. Math. 500 (2002), 211-229 Zbl1036.46052MR1925913
  19. M. Măntoiu, On Abelian C * -Algebras that are Independent with Respect to a Filter, J. London Math. Soc. 71 (2005), 740-758 Zbl1088.46026MR2132381
  20. M. Măntoiu, R. Purice, The Magnetic Weyl Calculus, J. Math. Phys. 45 (2004), 1394-1417 Zbl1068.81043MR2043834
  21. M. Măntoiu, R. Purice, S. Richard, Spectral and Propagation Results for Magnetic Schrödinger Operators; a C * -Algebraic Framework, J. Funct. Anal. 250 (2007), 42-67 Zbl1173.46048MR2345905
  22. L. A. Pastur, A. Figotin, Spectra of Random and Almost Periodic Operators, (1992), Springer Verlag, Berlin Zbl0752.47002MR1223779
  23. V. S. Rabinovich, S. Roch, J. Roe, Fredholm Indices of Band-Dominated Operators, Int. Eq. Op. Theory 49 (2004), 221-238 Zbl1068.47016MR2060373
  24. V. S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and their Applications in Operator Theory, 150 (2004), Birkhäuser, Basel Zbl1077.47002MR2075882
  25. M. Reed, B. Simon, Methods of Modern Mathematical Physics I, Functional Analysis, (1980), [Harcourt Brace Jovanovich Publishers], New York, second edition Zbl0459.46001MR751959
  26. M. A. Rieffel, Quantization and C * -Algebras, Doran R. S. (ed.) -Algebras: 1943–1993 167, 67-97, AMS Providence Zbl0847.46036MR1292010
  27. M. A. Rieffel, Deformation Quantization for Actions of d , 506 (1993), Mem. AMS Zbl0798.46053MR1184061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.