Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
- [1] Universidad de Chile, Facultad de Ciencias, Departamento de Matemáticas, Las Palmeras 3425, Casilla 653 Santiago, Chile
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1551-1580
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMăntoiu, Marius. "Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians." Annales de l’institut Fourier 62.4 (2012): 1551-1580. <http://eudml.org/doc/251133>.
@article{Măntoiu2012,
abstract = {We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.},
affiliation = {Universidad de Chile, Facultad de Ciencias, Departamento de Matemáticas, Las Palmeras 3425, Casilla 653 Santiago, Chile},
author = {Măntoiu, Marius},
journal = {Annales de l’institut Fourier},
keywords = {Pseudodifferential operator; essential spectrum; random operator; semiclassical limit; noncommutative dynamical system; pseudodifferential operator},
language = {eng},
number = {4},
pages = {1551-1580},
publisher = {Association des Annales de l’institut Fourier},
title = {Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians},
url = {http://eudml.org/doc/251133},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Măntoiu, Marius
TI - Rieffel’s pseudodifferential calculus and spectral analysis of quantum Hamiltonians
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1551
EP - 1580
AB - We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.
LA - eng
KW - Pseudodifferential operator; essential spectrum; random operator; semiclassical limit; noncommutative dynamical system; pseudodifferential operator
UR - http://eudml.org/doc/251133
ER -
References
top- W. O. Amrein, A. Boutet de Monvel, V. Georgescu, -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, (1996), Birkhäuser, Basel Zbl0962.47500MR1388037
- N. Athmouni, M. Măntoiu, R. Purice, On the Continuity of Spectra for Families of Magnetic Pseudodifferential Operators, J. Math. Phys. 51, 083517 (2010) Zbl1312.81059MR2683559
- J. Bellissard, D.J.L. Herrmann, M. Zarrouati, Hull of Aperiodic Solids and Gap Labelling Theorems, Directions in Mathematical Quasicrystals 13 (2000), 207-259 Zbl0972.52014MR1798994
- R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, (1990), Birkhäuser Boston Inc., Boston, MA Zbl0717.60074MR1102675
- E. B. Davies, Decomposing the Essential Spectrum, J. Funct. Anal. 257 (2009), 506-536 Zbl1176.47001MR2527027
- K. de Leeuw, H. Mirkil, Translation-invariant function algebras on abelian groups, Bull. Soc. Math. France 88 (1960), 345-370 Zbl0093.12703MR121613
- G. B. Folland, Harmonic analysis in phase space, 122 (1989), Princeton University Press, Princeton, NJ Zbl0682.43001MR983366
- V. Georgescu, On the Structure of the Essential Spectrum of Elliptic Operators in Metric Spaces, J. Funct. Anal. 220 (2011), 1734-1765 Zbl1242.47052MR2754891
- V. Georgescu, A. Iftimovici, Crossed Products of -Algebras and Spectral Analysis of Quantum Hamiltonians, Commun. Math. Phys. 228 (2002), 519-530 Zbl1005.81026MR1918787
- V. Georgescu, A. Iftimovici, -Algebras of Quantum Hamiltonians, Operator Algebras and Mathematical Physics (Constanta, 2001) (2003), 123-167, Theta, Bucharest Zbl1247.46060MR2018228
- V. Georgescu, A. Iftimovici, Localizations at Infinity and Essential Spectrum of Quantum Hamiltonians. I. General Theory, Rev. Math. Phys. 18 (2006), 417-483 Zbl1109.47004MR2245367
- B. Helffer, A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier 38 (1988), 95-112 Zbl0638.47047MR949012
- V. Iftimie, M. Măntoiu, R. Purice, Magnetic Pseudodifferential Operators, Publ. RIMS 43 (2007), 585-623 Zbl1165.35056MR2361789
- Y. Last, B. Simon, The Essential Spectrum of Schrödinger, Jacobi and CMV Operators, J. d’Analyse Math. 98 (2006), 183-220 Zbl1145.34052MR2254485
- R. Lauter, B. Monthubert, V. Nistor, Spectral Invariance for Certain Algebras of Pseudodifferential Operators, J. Inst. Math. Jussieu 4 (2005), 405-442 Zbl1088.35087MR2197064
- R. Lauter, V. Nistor, Analysis of Geometric Operators on Open Manifolds: a Groupoid Approach, Quantization of Singular Symplectic Quotients 198 (2001), 181-229, Birkhäuser, Basel Zbl1018.58009MR1938556
- M. Lein, M. Măntoiu, S. Richard, Magnetic Pseudodifferential Operators with Coefficients in -algebras, Publ. RIMS Kyoto Univ. 46 (2010), 595-628 Zbl1205.35349MR2791006
- M. Măntoiu, Compactifications, Dynamical Systems at Infinity and the Essential Spectrum of Generalized Schödinger Operators, J. reine angew. Math. 500 (2002), 211-229 Zbl1036.46052MR1925913
- M. Măntoiu, On Abelian -Algebras that are Independent with Respect to a Filter, J. London Math. Soc. 71 (2005), 740-758 Zbl1088.46026MR2132381
- M. Măntoiu, R. Purice, The Magnetic Weyl Calculus, J. Math. Phys. 45 (2004), 1394-1417 Zbl1068.81043MR2043834
- M. Măntoiu, R. Purice, S. Richard, Spectral and Propagation Results for Magnetic Schrödinger Operators; a -Algebraic Framework, J. Funct. Anal. 250 (2007), 42-67 Zbl1173.46048MR2345905
- L. A. Pastur, A. Figotin, Spectra of Random and Almost Periodic Operators, (1992), Springer Verlag, Berlin Zbl0752.47002MR1223779
- V. S. Rabinovich, S. Roch, J. Roe, Fredholm Indices of Band-Dominated Operators, Int. Eq. Op. Theory 49 (2004), 221-238 Zbl1068.47016MR2060373
- V. S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and their Applications in Operator Theory, 150 (2004), Birkhäuser, Basel Zbl1077.47002MR2075882
- M. Reed, B. Simon, Methods of Modern Mathematical Physics I, Functional Analysis, (1980), [Harcourt Brace Jovanovich Publishers], New York, second edition Zbl0459.46001MR751959
- M. A. Rieffel, Quantization and -Algebras, Doran R. S. (ed.) -Algebras: 1943–1993 167, 67-97, AMS Providence Zbl0847.46036MR1292010
- M. A. Rieffel, Deformation Quantization for Actions of , 506 (1993), Mem. AMS Zbl0798.46053MR1184061
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.