A remarkable contraction of semisimple Lie algebras

Dmitri I. Panyushev[1]; Oksana S. Yakimova[2]

  • [1] Institute for Information Transmission Problems of the R.A.S. B. Karetnyi per. 19 Moscow 127994 (Russia)
  • [2] Friedrich-Schiller-Universität Jena Mathematisches Institut Jena D-07737 (Deutschland)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 6, page 2053-2068
  • ISSN: 0373-0956

Abstract

top
Recently, E.Feigin introduced a very interesting contraction 𝔮 of a semisimple Lie algebra 𝔤 (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of 𝔤 . For instance, the algebras of invariants of both adjoint and coadjoint representations of 𝔮 are free, and also the enveloping algebra of 𝔮 is a free module over its centre.

How to cite

top

Panyushev, Dmitri I., and Yakimova, Oksana S.. "A remarkable contraction of semisimple Lie algebras." Annales de l’institut Fourier 62.6 (2012): 2053-2068. <http://eudml.org/doc/251140>.

@article{Panyushev2012,
abstract = {Recently, E.Feigin introduced a very interesting contraction $\mathfrak\{q\}$ of a semisimple Lie algebra $\mathfrak\{g\}$ (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of $\mathfrak\{g\}$. For instance, the algebras of invariants of both adjoint and coadjoint representations of $\mathfrak\{q\}$ are free, and also the enveloping algebra of $\mathfrak\{q\}$ is a free module over its centre.},
affiliation = {Institute for Information Transmission Problems of the R.A.S. B. Karetnyi per. 19 Moscow 127994 (Russia); Friedrich-Schiller-Universität Jena Mathematisches Institut Jena D-07737 (Deutschland)},
author = {Panyushev, Dmitri I., Yakimova, Oksana S.},
journal = {Annales de l’institut Fourier},
keywords = {Inönü-Wigner contraction; coadjoint representation; algebra of invariants; orbit; Inonu-Wigner contraction; invariant algebras; adjoint representation},
language = {eng},
number = {6},
pages = {2053-2068},
publisher = {Association des Annales de l’institut Fourier},
title = {A remarkable contraction of semisimple Lie algebras},
url = {http://eudml.org/doc/251140},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Panyushev, Dmitri I.
AU - Yakimova, Oksana S.
TI - A remarkable contraction of semisimple Lie algebras
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2053
EP - 2068
AB - Recently, E.Feigin introduced a very interesting contraction $\mathfrak{q}$ of a semisimple Lie algebra $\mathfrak{g}$ (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of $\mathfrak{g}$. For instance, the algebras of invariants of both adjoint and coadjoint representations of $\mathfrak{q}$ are free, and also the enveloping algebra of $\mathfrak{q}$ is a free module over its centre.
LA - eng
KW - Inönü-Wigner contraction; coadjoint representation; algebra of invariants; orbit; Inonu-Wigner contraction; invariant algebras; adjoint representation
UR - http://eudml.org/doc/251140
ER -

References

top
  1. Michel Brion, Invariants et covariants des groupes algébriques réductifs, (2000) Zbl1095.14003
  2. Evgeny Feigin, 𝔾 a M -degeneration of flag varieties, , to appear Zbl1267.14064
  3. Evgeny Feigin, Degenerate flag varieties and the median Genocchi numbers, Math. Research Letters 18 (2011), 1163-1178 Zbl1279.14062MR2915473
  4. Evgeny Feigin, Ghislain Fourier, Peter Littelmann, PBW filtration and bases for irreducible modules in type A n , Transform. Groups 16 (2011), 71-89 Zbl1237.17011MR2785495
  5. François Geoffriau, Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff, Ann. Math. Blaise Pascal 1 (1994), 15-31 (1995) Zbl0842.17008MR1321674
  6. Jun Ichi Igusa, Geometry of absolutely admissible representations, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki (1973), 373-452, Kinokuniya, Tokyo Zbl0271.20022MR367077
  7. Anthony Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra 312 (2007), 158-193 Zbl1184.17008MR2320453
  8. Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404 Zbl0124.26802MR158024
  9. D. I. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), 343-391 Zbl1163.17012MR2326150
  10. Dmitri I. Panyushev, On the coadjoint representation of 2 -contractions of reductive Lie algebras, Adv. Math. 213 (2007), 380-404 Zbl1177.17010MR2331248
  11. Dmitri I. Panyushev, Semi-direct products of Lie algebras and their invariants, Publ. Res. Inst. Math. Sci. 43 (2007), 1199-1257 Zbl1151.14036MR2389799
  12. M. Raïs, Champs de vecteurs invariants sur une algèbre de Lie réductive complexe, J. Math. Soc. Japan 40 (1988), 615-628 Zbl0679.17004MR959089
  13. Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980), 37-135 Zbl0449.57009MR573821
  14. T. A. Springer, Conjugacy classes in algebraic groups, Group theory, Beijing 1984 1185 (1986), 175-209, Springer, Berlin Zbl0624.20029MR842444
  15. È. B. Vinberg, V. V. Gorbatsevich, A. L. Onishchik, Gruppy i algebry Li - 3, (1990), Sovrem. probl. matematiki. Fundam. napravl., t. 41, Moskva: VINITI, Russian Zbl0693.00007
  16. Thierry Vust, Covariants de groupes algébriques réductifs, (1974) Zbl0332.22018
  17. O. Yakimova, One-parameter contractions of Lie-Poisson brackets, , to appear; Zbl06273106

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.