A remarkable contraction of semisimple Lie algebras
Dmitri I. Panyushev[1]; Oksana S. Yakimova[2]
- [1] Institute for Information Transmission Problems of the R.A.S. B. Karetnyi per. 19 Moscow 127994 (Russia)
- [2] Friedrich-Schiller-Universität Jena Mathematisches Institut Jena D-07737 (Deutschland)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 6, page 2053-2068
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanyushev, Dmitri I., and Yakimova, Oksana S.. "A remarkable contraction of semisimple Lie algebras." Annales de l’institut Fourier 62.6 (2012): 2053-2068. <http://eudml.org/doc/251140>.
@article{Panyushev2012,
abstract = {Recently, E.Feigin introduced a very interesting contraction $\mathfrak\{q\}$ of a semisimple Lie algebra $\mathfrak\{g\}$ (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of $\mathfrak\{g\}$. For instance, the algebras of invariants of both adjoint and coadjoint representations of $\mathfrak\{q\}$ are free, and also the enveloping algebra of $\mathfrak\{q\}$ is a free module over its centre.},
affiliation = {Institute for Information Transmission Problems of the R.A.S. B. Karetnyi per. 19 Moscow 127994 (Russia); Friedrich-Schiller-Universität Jena Mathematisches Institut Jena D-07737 (Deutschland)},
author = {Panyushev, Dmitri I., Yakimova, Oksana S.},
journal = {Annales de l’institut Fourier},
keywords = {Inönü-Wigner contraction; coadjoint representation; algebra of invariants; orbit; Inonu-Wigner contraction; invariant algebras; adjoint representation},
language = {eng},
number = {6},
pages = {2053-2068},
publisher = {Association des Annales de l’institut Fourier},
title = {A remarkable contraction of semisimple Lie algebras},
url = {http://eudml.org/doc/251140},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Panyushev, Dmitri I.
AU - Yakimova, Oksana S.
TI - A remarkable contraction of semisimple Lie algebras
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 6
SP - 2053
EP - 2068
AB - Recently, E.Feigin introduced a very interesting contraction $\mathfrak{q}$ of a semisimple Lie algebra $\mathfrak{g}$ (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of $\mathfrak{g}$. For instance, the algebras of invariants of both adjoint and coadjoint representations of $\mathfrak{q}$ are free, and also the enveloping algebra of $\mathfrak{q}$ is a free module over its centre.
LA - eng
KW - Inönü-Wigner contraction; coadjoint representation; algebra of invariants; orbit; Inonu-Wigner contraction; invariant algebras; adjoint representation
UR - http://eudml.org/doc/251140
ER -
References
top- Michel Brion, Invariants et covariants des groupes algébriques réductifs, (2000) Zbl1095.14003
- Evgeny Feigin, -degeneration of flag varieties, , to appear Zbl1267.14064
- Evgeny Feigin, Degenerate flag varieties and the median Genocchi numbers, Math. Research Letters 18 (2011), 1163-1178 Zbl1279.14062MR2915473
- Evgeny Feigin, Ghislain Fourier, Peter Littelmann, PBW filtration and bases for irreducible modules in type , Transform. Groups 16 (2011), 71-89 Zbl1237.17011MR2785495
- François Geoffriau, Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff, Ann. Math. Blaise Pascal 1 (1994), 15-31 (1995) Zbl0842.17008MR1321674
- Jun Ichi Igusa, Geometry of absolutely admissible representations, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki (1973), 373-452, Kinokuniya, Tokyo Zbl0271.20022MR367077
- Anthony Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra 312 (2007), 158-193 Zbl1184.17008MR2320453
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404 Zbl0124.26802MR158024
- D. I. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), 343-391 Zbl1163.17012MR2326150
- Dmitri I. Panyushev, On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math. 213 (2007), 380-404 Zbl1177.17010MR2331248
- Dmitri I. Panyushev, Semi-direct products of Lie algebras and their invariants, Publ. Res. Inst. Math. Sci. 43 (2007), 1199-1257 Zbl1151.14036MR2389799
- M. Raïs, Champs de vecteurs invariants sur une algèbre de Lie réductive complexe, J. Math. Soc. Japan 40 (1988), 615-628 Zbl0679.17004MR959089
- Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980), 37-135 Zbl0449.57009MR573821
- T. A. Springer, Conjugacy classes in algebraic groups, Group theory, Beijing 1984 1185 (1986), 175-209, Springer, Berlin Zbl0624.20029MR842444
- È. B. Vinberg, V. V. Gorbatsevich, A. L. Onishchik, Gruppy i algebry Li - 3, (1990), Sovrem. probl. matematiki. Fundam. napravl., t. 41, Moskva: VINITI, Russian Zbl0693.00007
- Thierry Vust, Covariants de groupes algébriques réductifs, (1974) Zbl0332.22018
- O. Yakimova, One-parameter contractions of Lie-Poisson brackets, , to appear; Zbl06273106
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.