Moduli of unipotent representations I: foundational topics
- [1] Leibniz Universität Hannover Institut für Algebra, Zahlentheorie und Diskrete Mathematik Fakultät für Mathematik und Physik Welfengarten 1 30167 Hannover Germany
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 1123-1187
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDan-Cohen, Ishai. "Moduli of unipotent representations I: foundational topics." Annales de l’institut Fourier 62.3 (2012): 1123-1187. <http://eudml.org/doc/251141>.
@article{Dan2012,
abstract = {With this work and its sequel, Moduli of unipotent representations II, we initiate a study of the finite dimensional algebraic representations of a unipotent group over a field of characteristic zero from the modular point of view. Let $G$ be such a group. The stack $\mathcal\{M\}_n(G)$ of all representations of dimension $n$ is badly behaved. In this first installment, we introduce a nondegeneracy condition which cuts out a substack $\mathcal\{M\}_n^\mathrm\{nd\}(G)$ which is better behaved, and, in particular, admits a coarse algebraic space, which we denote by $M_n^\mathrm\{nd\}(G)$. We also study the problem of glueing a pair of nondegenerate representations along a common subquotient.},
affiliation = {Leibniz Universität Hannover Institut für Algebra, Zahlentheorie und Diskrete Mathematik Fakultät für Mathematik und Physik Welfengarten 1 30167 Hannover Germany},
author = {Dan-Cohen, Ishai},
journal = {Annales de l’institut Fourier},
keywords = {unipotent representation; unipotent group action; coarse moduli space; moduli space; nilpotent Lie algebra},
language = {eng},
number = {3},
pages = {1123-1187},
publisher = {Association des Annales de l’institut Fourier},
title = {Moduli of unipotent representations I: foundational topics},
url = {http://eudml.org/doc/251141},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Dan-Cohen, Ishai
TI - Moduli of unipotent representations I: foundational topics
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1123
EP - 1187
AB - With this work and its sequel, Moduli of unipotent representations II, we initiate a study of the finite dimensional algebraic representations of a unipotent group over a field of characteristic zero from the modular point of view. Let $G$ be such a group. The stack $\mathcal{M}_n(G)$ of all representations of dimension $n$ is badly behaved. In this first installment, we introduce a nondegeneracy condition which cuts out a substack $\mathcal{M}_n^\mathrm{nd}(G)$ which is better behaved, and, in particular, admits a coarse algebraic space, which we denote by $M_n^\mathrm{nd}(G)$. We also study the problem of glueing a pair of nondegenerate representations along a common subquotient.
LA - eng
KW - unipotent representation; unipotent group action; coarse moduli space; moduli space; nilpotent Lie algebra
UR - http://eudml.org/doc/251141
ER -
References
top- Michael Artin, Versal deformations and algebraic stacks, Inventiones Mathematicae (1974), 165-189 Zbl0317.14001MR399094
- Aravind Asok, Brent Doran, On unipotent quotients of some -contractible smooth schemes, International Mathematics Research Papers (2007) Zbl1157.14032
- Nicholas Bourbaki, Eléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres., (1972), Hermann, Paris Zbl0244.22007MR271276
- Ishai Dan-Cohen, Moduli of unipotent representations II: wide representations and the width Zbl1316.14091
- Michel Demazure, Pierre Gabriel, Groupes algébriques. Tome I: Géometrie algébrique, généralités, groupes commutatifs, (1970), Masson & Cie, Paris Zbl0203.23401MR302656
- Brent Doran, Frances Kirwan, Towards non-reductive geometric invariant theory, Pure and Applied Mathematics Quarterly (2007), 61-105 Zbl1143.14039MR2330155
- David Eisenbud, Commutative algebra with a view toward algebraic geometry, (1995), Springer-Verlag, Berlin and New York Zbl0819.13001MR1322960
- Alexandre Grothendieck, Eléments de géométrie algébrique. II. Etude globale élémentaire de quelques classes de morphismes, Publications Mathématique de l’IHÉS (1961), 5-222
- Alexandre Grothendieck, Eléments de géométrie algébrique. IV. Étude locale de schémas et des morphismes de schémas. III, Publications Mathématique de l’IHÉS (1966), 5-255 Zbl0144.19904MR217086
- Alexandre Grothendieck, Revêtements étales et groupe fondamental (SGA I), (2003), Société Matheématique de France, Paris MR2017446
- Seán Keel, Shigefumi Mori, Quotients by groupoids, Annals of Mathematics Second Series (1997), 193-213 Zbl0881.14018MR1432041
- Anthony W. Knapp, Lie groups beyond an introduction, (1996), Birkhäuser, Basel Zbl0862.22006MR1399083
- Gérard Laumon, Laurent Moret-Bailly, Champs algébriques, (2000), Springer-Verlag, Berlin MR1771927
- David Mumford, John Fogarty, Frances Kirwan, Geometric invariant theory, third enlarged edition, (2002), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- Martin Olsson, Compactifying moduli spaces for abelian varieties, (2008), Springer-Verlag, Berlin and New York Zbl1165.14004MR2446415
- Neantro Saavedra Rivano, Catégories Tannakiennes, (1972), Springer-Verlag, Berlin and New York Zbl0241.14008MR338002
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Publications mathématiques de l’IHÉS (1995), 5-97 Zbl0891.14006MR1320603
- Gunther Tamme, Introduction to étale cohomology, (1994), Springer-Verlag, Berlin Zbl0815.14012MR1317816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.