An example of an asymptotically Chow unstable manifold with constant scalar curvature
Hajime Ono[1]; Yuji Sano[2]; Naoto Yotsutani[3]
- [1] Tokyo University of Science Faculty of Science and Technology Department of Mathematics 2641 Yamazaki, Noda Chiba 278-8510 (Japan)
- [2] Kumamoto University Graduate School of Science and Technology 2-39-1, Kurokami Kumamoto, 860-8555 (Japan)
- [3] University of Science and Technology of China School of Mathematics Hefei, Anhui 230026 P.R. (China)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1265-1287
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOno, Hajime, Sano, Yuji, and Yotsutani, Naoto. "An example of an asymptotically Chow unstable manifold with constant scalar curvature." Annales de l’institut Fourier 62.4 (2012): 1265-1287. <http://eudml.org/doc/251142>.
@article{Ono2012,
abstract = {Donaldson proved that if a polarized manifold $(V, L)$ has constant scalar curvature Kähler metrics in $c_1(\!L)$ and its automorphism group $\mathrm\{Aut\}(V\!\!,\!L)$ is discrete, $(V,L)$ is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where $\mathrm\{Aut\}(V, L)$ is not discrete.},
affiliation = {Tokyo University of Science Faculty of Science and Technology Department of Mathematics 2641 Yamazaki, Noda Chiba 278-8510 (Japan); Kumamoto University Graduate School of Science and Technology 2-39-1, Kurokami Kumamoto, 860-8555 (Japan); University of Science and Technology of China School of Mathematics Hefei, Anhui 230026 P.R. (China)},
author = {Ono, Hajime, Sano, Yuji, Yotsutani, Naoto},
journal = {Annales de l’institut Fourier},
keywords = {asymptotic Chow stability; Kähler metric of constant scalar curvature; toric Fano manifold; Futaki invariant; Kähler metric of constant scalar curvature, asymptotic Chow stability},
language = {eng},
number = {4},
pages = {1265-1287},
publisher = {Association des Annales de l’institut Fourier},
title = {An example of an asymptotically Chow unstable manifold with constant scalar curvature},
url = {http://eudml.org/doc/251142},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Ono, Hajime
AU - Sano, Yuji
AU - Yotsutani, Naoto
TI - An example of an asymptotically Chow unstable manifold with constant scalar curvature
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1265
EP - 1287
AB - Donaldson proved that if a polarized manifold $(V, L)$ has constant scalar curvature Kähler metrics in $c_1(\!L)$ and its automorphism group $\mathrm{Aut}(V\!\!,\!L)$ is discrete, $(V,L)$ is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where $\mathrm{Aut}(V, L)$ is not discrete.
LA - eng
KW - asymptotic Chow stability; Kähler metric of constant scalar curvature; toric Fano manifold; Futaki invariant; Kähler metric of constant scalar curvature, asymptotic Chow stability
UR - http://eudml.org/doc/251142
ER -
References
top- Claudio Arezzo, Andrea Loi, Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys. 246 (2004), 543-559 Zbl1062.32021MR2053943
- Victor V. Batyrev, Elena N. Selivanova, Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math. 512 (1999), 225-236 Zbl0939.32016MR1703080
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), 479-522 Zbl1052.32017MR1916953
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289-349 Zbl1074.53059MR1988506
- A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437-443 Zbl0506.53030MR718940
- A. Futaki, Kähler-Einstein metrics and integral invariants, 1314 (1988), Springer-Verlag, Berlin Zbl0646.53045MR947341
- A. Futaki, Asymptotic Chow semi-stability and integral invariants, Internat. J. Math. 15 (2004), 967-979 Zbl1074.53060MR2106156
- A. Futaki, S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135-142 Zbl0598.53055MR806707
- A. Futaki, H. Ono, Y. Sano, Hilbert series and obstructions to asymptotic semistability, Adv. Math. 226 (2011), 254-284 Zbl1209.53059MR2735758
- Toshiki Mabuchi, An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math. 41 (2004), 463-472 Zbl1070.58012MR2069096
- Toshiki Mabuchi, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent. Math. 159 (2005), 225-243 Zbl1118.53047MR2116275
- Ezra Miller, Bernd Sturmfels, Combinatorial commutative algebra, 227 (2005), Springer-Verlag, New York Zbl1090.13001MR2110098
- D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 34 (1994), Springer-Verlag, Berlin Zbl0797.14004MR1304906
- B. Nill, A. Paffenholz, Examples of non-symmetric Kähler-Einstein toric Fano manifolds Zbl1225.14042
- Tadao Oda, Convex bodies and algebraic geometry, 15 (1988), Springer-Verlag, Berlin Zbl0628.52002MR922894
- H. Ono, A necessary condition for Chow semistability of polarized toric manifolds, J. Math. Soc., Japan 63 (2011), 1377-1389 Zbl1230.14069MR2855816
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37 Zbl0892.53027MR1471884
- Xu-Jia Wang, Xiaohua Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87-103 Zbl1086.53067MR2084775
- Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798-1799 Zbl0355.32028MR451180
- Shing-Tung Yau, Perspectives on geometric analysis, Surveys in differential geometry. Vol. X 10 (2006), 275-379, Int. Press, Somerville, MA Zbl1138.53004MR2408227
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.