Banach spaces without minimal subspaces – Examples

Valentin Ferenczi[1]; Christian Rosendal[2]

  • [1] Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Matemática rua do Matão, 1010 05508-090 São Paulo, SP, (Brazil)
  • [2] University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 S. Morgan Street Chicago, IL 60607-7045 (USA)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 439-475
  • ISSN: 0373-0956

Abstract

top
We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.

How to cite

top

Ferenczi, Valentin, and Rosendal, Christian. "Banach spaces without minimal subspaces – Examples." Annales de l’institut Fourier 62.2 (2012): 439-475. <http://eudml.org/doc/251144>.

@article{Ferenczi2012,
abstract = {We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.},
affiliation = {Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Matemática rua do Matão, 1010 05508-090 São Paulo, SP, (Brazil); University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 S. Morgan Street Chicago, IL 60607-7045 (USA)},
author = {Ferenczi, Valentin, Rosendal, Christian},
journal = {Annales de l’institut Fourier},
keywords = {tight Banach spaces; dichotomies; classification of Banach spaces},
language = {eng},
number = {2},
pages = {439-475},
publisher = {Association des Annales de l’institut Fourier},
title = {Banach spaces without minimal subspaces – Examples},
url = {http://eudml.org/doc/251144},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Ferenczi, Valentin
AU - Rosendal, Christian
TI - Banach spaces without minimal subspaces – Examples
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 439
EP - 475
AB - We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.
LA - eng
KW - tight Banach spaces; dichotomies; classification of Banach spaces
UR - http://eudml.org/doc/251144
ER -

References

top
  1. Spiros A. Argyros, Kevin Beanland, Theocharis Raikoftsalis, An extremely non-homogeneous weak Hilbert space, Trans. Amer. Math. Soc. Zbl1281.46012
  2. Spiros A. Argyros, Kevin Beanland, Theocharis Raikoftsalis, A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris 348 (2010), 1293-1296 Zbl1208.46012MR2745342
  3. Spiros A. Argyros, I. Deliyanni, Examples of asymptotic l 1 Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995 Zbl0869.46002MR1390965
  4. Spiros A. Argyros, I. Deliyanni, D. N. Kutzarova, A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), 43-109 Zbl0931.46017MR1654174
  5. Spiros A. Argyros, R. Haydon, A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), 1-54 Zbl1223.46007MR2784662
  6. Benoît Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2002), 117-152 Zbl0788.46007MR1899225
  7. Peter G. Casazza, Some questions arising from the homogeneous Banach space problem, Banach spaces (Mérida, 1992) 144 (1993), 35-52, Amer. Math. Soc., Providence, RI Zbl0805.46015MR1209445
  8. Peter G. Casazza, Thaddeus J. Shura, Tsirelson’s space, 1363 (1989), Springer-Verlag, Berlin Zbl0709.46008MR981801
  9. S. Dilworth, V. Ferenczi, D. Kutzarova, E. Odell, On strongly asymptotically p spaces and minimality, Journal of the London Math. Soc. 75 (2007), 409-419 Zbl1139.46013MR2340235
  10. Valentin Ferenczi, Christian Rosendal, Ergodic Banach spaces, Adv. Math. 195 (2005), 259-282 Zbl1082.46009MR2145797
  11. Valentin Ferenczi, Christian Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal. 257 (2009), 149-193 Zbl1181.46004MR2523338
  12. W. T. Gowers, A solution to Banach’s hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530 Zbl0838.46011MR1315601
  13. W. T. Gowers, A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992–1994) 77 (1995), 112-120, Birkhäuser, Basel Zbl0867.46007MR1353454
  14. W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), 1083-1093 Zbl0868.46007MR1421876
  15. W. T. Gowers, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2) 156 (2002), 797-833 Zbl1030.46005MR1954235
  16. W. T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874 Zbl0827.46008MR1201238
  17. Denka Kutzarova, Denny H. Leung, Antonis Manoussakis, Wee-Kee Tang, Minimality properties of Tsirelson type spaces, Studia Math. 187 (2008), 233-263 Zbl1160.46007MR2417456
  18. A. Manoussakis, A. Pelczar, Quasi-minimality in mixed Tsirelson’s spaces, Math. Nachrichten Zbl1232.46009
  19. Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95 Zbl0796.46007MR1177333
  20. Adi Tcaciuc, On the existence of asymptotic- l p structures in Banach spaces, Canad. Math. Bull. 50 (2007), 619-631 Zbl1156.46014MR2364212
  21. B. S. Tsirelson, Not every Banach space contains p or c 0 , Functional Anal. Appl. 8 (1974), 138-141 Zbl0296.46018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.