Banach spaces without minimal subspaces – Examples
Valentin Ferenczi[1]; Christian Rosendal[2]
- [1] Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Matemática rua do Matão, 1010 05508-090 São Paulo, SP, (Brazil)
- [2] University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 S. Morgan Street Chicago, IL 60607-7045 (USA)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 439-475
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFerenczi, Valentin, and Rosendal, Christian. "Banach spaces without minimal subspaces – Examples." Annales de l’institut Fourier 62.2 (2012): 439-475. <http://eudml.org/doc/251144>.
@article{Ferenczi2012,
abstract = {We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.},
affiliation = {Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Matemática rua do Matão, 1010 05508-090 São Paulo, SP, (Brazil); University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science 851 S. Morgan Street Chicago, IL 60607-7045 (USA)},
author = {Ferenczi, Valentin, Rosendal, Christian},
journal = {Annales de l’institut Fourier},
keywords = {tight Banach spaces; dichotomies; classification of Banach spaces},
language = {eng},
number = {2},
pages = {439-475},
publisher = {Association des Annales de l’institut Fourier},
title = {Banach spaces without minimal subspaces – Examples},
url = {http://eudml.org/doc/251144},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Ferenczi, Valentin
AU - Rosendal, Christian
TI - Banach spaces without minimal subspaces – Examples
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 439
EP - 475
AB - We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11],by classifying them according to which side of the dichotomies they fall.
LA - eng
KW - tight Banach spaces; dichotomies; classification of Banach spaces
UR - http://eudml.org/doc/251144
ER -
References
top- Spiros A. Argyros, Kevin Beanland, Theocharis Raikoftsalis, An extremely non-homogeneous weak Hilbert space, Trans. Amer. Math. Soc. Zbl1281.46012
- Spiros A. Argyros, Kevin Beanland, Theocharis Raikoftsalis, A weak Hilbert space with few symmetries, C. R. Math. Acad. Sci. Paris 348 (2010), 1293-1296 Zbl1208.46012MR2745342
- Spiros A. Argyros, I. Deliyanni, Examples of asymptotic Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995 Zbl0869.46002MR1390965
- Spiros A. Argyros, I. Deliyanni, D. N. Kutzarova, A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), 43-109 Zbl0931.46017MR1654174
- Spiros A. Argyros, R. Haydon, A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), 1-54 Zbl1223.46007MR2784662
- Benoît Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2002), 117-152 Zbl0788.46007MR1899225
- Peter G. Casazza, Some questions arising from the homogeneous Banach space problem, Banach spaces (Mérida, 1992) 144 (1993), 35-52, Amer. Math. Soc., Providence, RI Zbl0805.46015MR1209445
- Peter G. Casazza, Thaddeus J. Shura, Tsirelson’s space, 1363 (1989), Springer-Verlag, Berlin Zbl0709.46008MR981801
- S. Dilworth, V. Ferenczi, D. Kutzarova, E. Odell, On strongly asymptotically spaces and minimality, Journal of the London Math. Soc. 75 (2007), 409-419 Zbl1139.46013MR2340235
- Valentin Ferenczi, Christian Rosendal, Ergodic Banach spaces, Adv. Math. 195 (2005), 259-282 Zbl1082.46009MR2145797
- Valentin Ferenczi, Christian Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal. 257 (2009), 149-193 Zbl1181.46004MR2523338
- W. T. Gowers, A solution to Banach’s hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530 Zbl0838.46011MR1315601
- W. T. Gowers, A hereditarily indecomposable space with an asymptotic unconditional basis, Geometric aspects of functional analysis (Israel, 1992–1994) 77 (1995), 112-120, Birkhäuser, Basel Zbl0867.46007MR1353454
- W. T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996), 1083-1093 Zbl0868.46007MR1421876
- W. T. Gowers, An infinite Ramsey theorem and some Banach-space dichotomies, Ann. of Math. (2) 156 (2002), 797-833 Zbl1030.46005MR1954235
- W. T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874 Zbl0827.46008MR1201238
- Denka Kutzarova, Denny H. Leung, Antonis Manoussakis, Wee-Kee Tang, Minimality properties of Tsirelson type spaces, Studia Math. 187 (2008), 233-263 Zbl1160.46007MR2417456
- A. Manoussakis, A. Pelczar, Quasi-minimality in mixed Tsirelson’s spaces, Math. Nachrichten Zbl1232.46009
- Thomas Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95 Zbl0796.46007MR1177333
- Adi Tcaciuc, On the existence of asymptotic- structures in Banach spaces, Canad. Math. Bull. 50 (2007), 619-631 Zbl1156.46014MR2364212
- B. S. Tsirelson, Not every Banach space contains or , Functional Anal. Appl. 8 (1974), 138-141 Zbl0296.46018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.