PSL septimic fields with a power basis
Melisa J. Lavallee[1]; Blair K. Spearman[1]; Qiduan Yang[1]
- [1] Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 369-375
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLavallee, Melisa J., Spearman, Blair K., and Yang, Qiduan. "PSL$(2,7)$ septimic fields with a power basis." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 369-375. <http://eudml.org/doc/251146>.
@article{Lavallee2012,
abstract = {We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group $PSL(2,7)$.},
affiliation = {Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7; Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7; Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7},
author = {Lavallee, Melisa J., Spearman, Blair K., Yang, Qiduan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Galois Group; Septimic Field; Power Basis; septimic fields; parametric family of fields; power integral basis; monogenic; Galois group},
language = {eng},
month = {6},
number = {2},
pages = {369-375},
publisher = {Société Arithmétique de Bordeaux},
title = {PSL$(2,7)$ septimic fields with a power basis},
url = {http://eudml.org/doc/251146},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Lavallee, Melisa J.
AU - Spearman, Blair K.
AU - Yang, Qiduan
TI - PSL$(2,7)$ septimic fields with a power basis
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 369
EP - 375
AB - We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group $PSL(2,7)$.
LA - eng
KW - Galois Group; Septimic Field; Power Basis; septimic fields; parametric family of fields; power integral basis; monogenic; Galois group
UR - http://eudml.org/doc/251146
ER -
References
top- H. Cohen, A Course in Computational Algebraic Number Theory. Springer-Verlag, 2000. Zbl0786.11071MR1228206
- I. Gaál, Diophantine equations and power integral bases. New Computational Methods. Birkhauser, Boston, 2002. MR1896601
- M.-N. Gras, Non-monogénéité de l’anneau des entiers des extensions cycliques de de degré premier . J. Number Theory 23 (1986), 347–353. MR846964
- C. U. Jensen, A. Ledet, N. Yui, Generic Polynomials, constructive aspects of Galois theory, MSRI Publications. Cambridge University Press, 2002. Zbl1042.12001MR1969648
- M. J. Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, Dihedral quintic fields with a power basis. Mathematical Journal of Okayama University, vol. 47 (2005), 75–79. Zbl1161.11393MR2198862
- Y. Motoda, T. Nakahara and K. H Park, On power integral bases of the 2-elementary abelian extension fields. Trends in Mathematics, Information Center for Mathematical Sciences, Volume 8 (June 2006), Number 1, 55–63.
- M. Nair, Power free values of polynomials. Mathematika 23 (1976), 159–183. Zbl0349.10039MR429801
- B. K. Spearman, A. Watanabe and K. S. Williams, PSL(2,5) sextic fields with a power basis. Kodai Math. J., Vol. 29 (2006), No. 1, 5–12. Zbl1096.11038MR2222162
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Third Edition, Springer, 2000. Zbl0717.11045MR2078267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.