PSL ( 2 , 7 ) septimic fields with a power basis

Melisa J. Lavallee[1]; Blair K. Spearman[1]; Qiduan Yang[1]

  • [1] Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 369-375
  • ISSN: 1246-7405

Abstract

top
We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group P S L ( 2 , 7 ) .

How to cite

top

Lavallee, Melisa J., Spearman, Blair K., and Yang, Qiduan. "PSL$(2,7)$ septimic fields with a power basis." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 369-375. <http://eudml.org/doc/251146>.

@article{Lavallee2012,
abstract = {We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group $PSL(2,7)$.},
affiliation = {Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7; Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7; Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7},
author = {Lavallee, Melisa J., Spearman, Blair K., Yang, Qiduan},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Galois Group; Septimic Field; Power Basis; septimic fields; parametric family of fields; power integral basis; monogenic; Galois group},
language = {eng},
month = {6},
number = {2},
pages = {369-375},
publisher = {Société Arithmétique de Bordeaux},
title = {PSL$(2,7)$ septimic fields with a power basis},
url = {http://eudml.org/doc/251146},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Lavallee, Melisa J.
AU - Spearman, Blair K.
AU - Yang, Qiduan
TI - PSL$(2,7)$ septimic fields with a power basis
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 369
EP - 375
AB - We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group $PSL(2,7)$.
LA - eng
KW - Galois Group; Septimic Field; Power Basis; septimic fields; parametric family of fields; power integral basis; monogenic; Galois group
UR - http://eudml.org/doc/251146
ER -

References

top
  1. H. Cohen, A Course in Computational Algebraic Number Theory. Springer-Verlag, 2000. Zbl0786.11071MR1228206
  2. I. Gaál, Diophantine equations and power integral bases. New Computational Methods. Birkhauser, Boston, 2002. MR1896601
  3. M.-N. Gras, Non-monogénéité de l’anneau des entiers des extensions cycliques de Q de degré premier l 5 . J. Number Theory 23 (1986), 347–353. MR846964
  4. C. U. Jensen, A. Ledet, N. Yui, Generic Polynomials, constructive aspects of Galois theory, MSRI Publications. Cambridge University Press, 2002. Zbl1042.12001MR1969648
  5. M. J. Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, Dihedral quintic fields with a power basis. Mathematical Journal of Okayama University, vol. 47 (2005), 75–79. Zbl1161.11393MR2198862
  6. Y. Motoda, T. Nakahara and K. H Park, On power integral bases of the 2-elementary abelian extension fields. Trends in Mathematics, Information Center for Mathematical Sciences, Volume 8 (June 2006), Number 1, 55–63. 
  7. M. Nair, Power free values of polynomials. Mathematika 23 (1976), 159–183. Zbl0349.10039MR429801
  8. B. K. Spearman, A. Watanabe and K. S. Williams, PSL(2,5) sextic fields with a power basis. Kodai Math. J., Vol. 29 (2006), No. 1, 5–12. Zbl1096.11038MR2222162
  9. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Third Edition, Springer, 2000. Zbl0717.11045MR2078267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.