Symmetrization of functions and principal eigenvalues of elliptic operators

François Hamel[1]; Nikolai Nadirashvili[2]; Emmanuel Russ[3]

  • [1] Aix-Marseille Université & Institut Universitaire de France LATP Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 France
  • [2] CNRS, LATP 39 rue F. Joliot-Curie 13453 Marseille Cedex 13 France
  • [3] Université Joseph Fourier Institut Fourier 100 rue des Maths BP 74 38402 St-Martin d’Hères France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-15
  • ISSN: 2266-0607

Abstract

top
In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of n . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator - Δ + v · , for which the minimization problem is still well posed. Next, we deal with more general elliptic operators - div ( A ) + v · + V , for which the coefficients fulfill various pointwise, integral or geometric constraints. In all cases, some operators with radially symmetric coefficients in an equimeasurable ball are shown to have smaller principal eigenvalues. Whereas the Faber-Krahn proof relies on the classical Schwarz symmetrization, another type of symmetrization is defined to handle the case of general (possibly non-symmetric) operators.

How to cite

top

Hamel, François, Nadirashvili, Nikolai, and Russ, Emmanuel. "Symmetrization of functions and principal eigenvalues of elliptic operators." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-15. <http://eudml.org/doc/251151>.

@article{Hamel2011-2012,
abstract = {In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of $\mathbb\{R\}^n$. We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator $-\Delta +v\cdot \nabla $, for which the minimization problem is still well posed. Next, we deal with more general elliptic operators $-\mathrm\{div\}(A\nabla )+v\cdot \nabla +V$ , for which the coefficients fulfill various pointwise, integral or geometric constraints. In all cases, some operators with radially symmetric coefficients in an equimeasurable ball are shown to have smaller principal eigenvalues. Whereas the Faber-Krahn proof relies on the classical Schwarz symmetrization, another type of symmetrization is defined to handle the case of general (possibly non-symmetric) operators.},
affiliation = {Aix-Marseille Université & Institut Universitaire de France LATP Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 France; CNRS, LATP 39 rue F. Joliot-Curie 13453 Marseille Cedex 13 France; Université Joseph Fourier Institut Fourier 100 rue des Maths BP 74 38402 St-Martin d’Hères France},
author = {Hamel, François, Nadirashvili, Nikolai, Russ, Emmanuel},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {eigenvalue problem; elliptic operator; Rayleigh-Faber-Krahn problem},
language = {eng},
pages = {1-15},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Symmetrization of functions and principal eigenvalues of elliptic operators},
url = {http://eudml.org/doc/251151},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Hamel, François
AU - Nadirashvili, Nikolai
AU - Russ, Emmanuel
TI - Symmetrization of functions and principal eigenvalues of elliptic operators
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 15
AB - In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of $\mathbb{R}^n$. We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator $-\Delta +v\cdot \nabla $, for which the minimization problem is still well posed. Next, we deal with more general elliptic operators $-\mathrm{div}(A\nabla )+v\cdot \nabla +V$ , for which the coefficients fulfill various pointwise, integral or geometric constraints. In all cases, some operators with radially symmetric coefficients in an equimeasurable ball are shown to have smaller principal eigenvalues. Whereas the Faber-Krahn proof relies on the classical Schwarz symmetrization, another type of symmetrization is defined to handle the case of general (possibly non-symmetric) operators.
LA - eng
KW - eigenvalue problem; elliptic operator; Rayleigh-Faber-Krahn problem
UR - http://eudml.org/doc/251151
ER -

References

top
  1. A. Alvino and G. Trombetti, A lower bound for the first eigenvalue of an elliptic operator, J. Math. Anal. Appl.94 (1983), 328-337. Zbl0525.35063MR706368
  2. A. Alvino and G. Trombetti, Isoperimetric inequalities connected with torsion problem and capacity, Boll. Union Mat. Ital. B4 (1985), 773-787. MR831290
  3. A. Alvino, G. Trombetti, P.-L. Lions and S. Matarasso, Comparison results for solutions of elliptic problems via symmetrization, Ann. Inst. Henri Poincaré16 2 (1999), 167-188. Zbl0924.35038MR1674768
  4. M.S. Ashbaugh and R.D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math.135 (1992), 601-628. Zbl0757.35052MR1166646
  5. M.S. Ashbaugh and R.D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J.78 (1995), 1-17. Zbl0833.35035MR1328749
  6. C. Bandle, Isoperimetric Inequalities and Applications, Pitman Monographs and Studies in Math. 7, Boston, 1980. Zbl0436.35063MR572958
  7. H. Berestycki, L. Nirenberg and S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math.47 (1994), 47-92. Zbl0806.35129MR1258192
  8. F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech.81 (2001), 69-71. Zbl0971.35055MR1808500
  9. D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian, Proc. Royal Soc. London Ser. A456 (2000), 985-996. Zbl0974.35082MR1805088
  10. S.-Y. Cheng and K. Oden, Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain, J. Geom. Anal.7 (1997), 217-239. Zbl0920.58054MR1646764
  11. D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann.335 (2006), 767-785. Zbl1220.35103MR2232016
  12. D. Daners and J. Kennedy, Uniqueness in the Faber-Krahn inequality for Robin problems, SIAM J. Math. Anal.39 (2007/08), 1191-1207. Zbl1155.35403MR2368899
  13. G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München (1923), 169-172. Zbl49.0342.03
  14. F. Hamel, N. Nadirashvili, E. Russ, An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift, C. R. Acad. Sci. Paris Ser. I340 (2005), 347-352. Zbl1066.35066MR2127108
  15. F. Hamel, N. Nadirashvili, E. Russ, Rearrangement inequalities and applications to isoperimetric problems for eigenvalues, Ann. Math.174 (2011), 647-755. Zbl1234.35161MR2831107
  16. A. Henrot, Minimization problems for eigenvalues of the Laplacian, J. Evol. Eq.3 (2003), 443-461. Zbl1049.49029MR2019029
  17. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, 2006. Zbl1109.35081MR2251558
  18. C.J. Holland, A minimum principle for the principal eigenvalue for second-order linear elliptic equations with natural boundary conditions, Comm. Pure Appl. Math.31 (1978), 509-519. Zbl0388.35053MR466940
  19. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann.94 (1925), 97-100. Zbl51.0356.05MR1512244
  20. E. Krahn, Über Minimaleigenschaft der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat)A9 (1926), 1-44. Zbl52.0510.03
  21. N.S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate, Arch. Ration. Mech. Anal.129 (1995), 1-10. Zbl0826.73035MR1328469
  22. L.E. Payne, G. Pólya and H.F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys.35 (1956), 289-298. Zbl0073.08203MR84696
  23. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies 27, Princeton Univ. Press, Princeton, 1951. Zbl0044.38301MR43486
  24. J.W.S. Rayleigh, The Theory of Sound, 2 nd ed. revised and enlarged (in 2 vols.), Dover Publications, New York, 1945 (republication of the 1894/1896 edition). Zbl0061.45904MR16009
  25. G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal.3 (1954), 343-356. Zbl0055.08802MR61749
  26. G. Talenti, Linear elliptic P.D.E.’s: level sets, rearrangements and a priori estimates of solutions, Boll. Union Mat. Ital. B6 (1985), 917-949. Zbl0602.35025MR831299
  27. G. Trombetti and J. L. Vazquez, A symmetrization result for elliptic equations with lower-order terms, Ann. Fac. Sci. Toulouse7 (1985), 137-150. Zbl0617.35036MR842766
  28. H.F. Weinberger, An isoperimetric inequality for the N -dimensional free membrane problem, J. Rational Mech. Anal.5 (1956), 633-636. Zbl0071.09902MR79286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.