Semi-classical measures for generalized plane waves

Colin Guillarmou[1]

  • [1] DMA, U.M.R. 8553 CNRS École Normale Supérieure 45 rue d’Ulm 75230 Paris cedex 05 France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-9
  • ISSN: 2266-0607

Abstract

top
Following joint work with Dyatlov [DyGu], we describe the semi-classical measures associated with generalized plane waves for metric perturbation of d , under the condition that the geodesic flow has trapped set K of Liouville measure 0 .

How to cite

top

Guillarmou, Colin. "Semi-classical measures for generalized plane waves." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-9. <http://eudml.org/doc/251163>.

@article{Guillarmou2011-2012,
abstract = {Following joint work with Dyatlov [DyGu], we describe the semi-classical measures associated with generalized plane waves for metric perturbation of $\mathbb\{R\}^d$, under the condition that the geodesic flow has trapped set $K$ of Liouville measure $0$.},
affiliation = {DMA, U.M.R. 8553 CNRS École Normale Supérieure 45 rue d’Ulm 75230 Paris cedex 05 France},
author = {Guillarmou, Colin},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Semi-classical measures for generalized plane waves},
url = {http://eudml.org/doc/251163},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Guillarmou, Colin
TI - Semi-classical measures for generalized plane waves
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 9
AB - Following joint work with Dyatlov [DyGu], we describe the semi-classical measures associated with generalized plane waves for metric perturbation of $\mathbb{R}^d$, under the condition that the geodesic flow has trapped set $K$ of Liouville measure $0$.
LA - eng
UR - http://eudml.org/doc/251163
ER -

References

top
  1. N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180 (1998), no. 1, 1–29. Zbl0918.35081MR1618254
  2. Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys. 102(1985), no. 3, 497–502. Zbl0592.58050MR818831
  3. S. Dyatlov, C. Guillarmou, Microlocal limits of plane waves and Eisenstein functions, arXiv:1204.1305. Zbl1297.58007
  4. B. Helffer, A. Martinez, and D. Robert, Ergodicité en limite semi-classique, Comm. Math. Phys. 109(1987), no. 2, 313–326. Zbl0624.58039MR880418
  5. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag New–York, UTX Series, 2002. Zbl0994.35003MR1872698
  6. R.B. Melrose, Geometric scattering theory, Lectures at Stanford, Cambridge University Press. Zbl0849.58071MR1350074
  7. A.I. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29(1974), 181–182. Zbl0324.58020MR402834
  8. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55(1987), no. 4, 919–941. Zbl0643.58029MR916129
  9. M. Zworski, Semiclassical analysis, to appear in Graduate Studies in Mathematics, AMS, 2012, http://math.berkeley.edu/~zworski/semiclassical.pdf. Zbl1252.58001MR2952218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.