Semi-classical measures for generalized plane waves
- [1] DMA, U.M.R. 8553 CNRS École Normale Supérieure 45 rue d’Ulm 75230 Paris cedex 05 France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-9
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topGuillarmou, Colin. "Semi-classical measures for generalized plane waves." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-9. <http://eudml.org/doc/251163>.
@article{Guillarmou2011-2012,
abstract = {Following joint work with Dyatlov [DyGu], we describe the semi-classical measures associated with generalized plane waves for metric perturbation of $\mathbb\{R\}^d$, under the condition that the geodesic flow has trapped set $K$ of Liouville measure $0$.},
affiliation = {DMA, U.M.R. 8553 CNRS École Normale Supérieure 45 rue d’Ulm 75230 Paris cedex 05 France},
author = {Guillarmou, Colin},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-9},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Semi-classical measures for generalized plane waves},
url = {http://eudml.org/doc/251163},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Guillarmou, Colin
TI - Semi-classical measures for generalized plane waves
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 9
AB - Following joint work with Dyatlov [DyGu], we describe the semi-classical measures associated with generalized plane waves for metric perturbation of $\mathbb{R}^d$, under the condition that the geodesic flow has trapped set $K$ of Liouville measure $0$.
LA - eng
UR - http://eudml.org/doc/251163
ER -
References
top- N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180 (1998), no. 1, 1–29. Zbl0918.35081MR1618254
- Y. Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys. 102(1985), no. 3, 497–502. Zbl0592.58050MR818831
- S. Dyatlov, C. Guillarmou, Microlocal limits of plane waves and Eisenstein functions, arXiv:1204.1305. Zbl1297.58007
- B. Helffer, A. Martinez, and D. Robert, Ergodicité en limite semi-classique, Comm. Math. Phys. 109(1987), no. 2, 313–326. Zbl0624.58039MR880418
- A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag New–York, UTX Series, 2002. Zbl0994.35003MR1872698
- R.B. Melrose, Geometric scattering theory, Lectures at Stanford, Cambridge University Press. Zbl0849.58071MR1350074
- A.I. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29(1974), 181–182. Zbl0324.58020MR402834
- S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55(1987), no. 4, 919–941. Zbl0643.58029MR916129
- M. Zworski, Semiclassical analysis, to appear in Graduate Studies in Mathematics, AMS, 2012, http://math.berkeley.edu/~zworski/semiclassical.pdf. Zbl1252.58001MR2952218
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.