On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher
- [1] Toulouse School of Economics (GREMAQ, Université de Toulouse) 21 Allée de Brienne F-31000 Toulouse France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-26
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBlanchet, Adrien. "On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-26. <http://eudml.org/doc/251170>.
@article{Blanchet2011-2012,
abstract = {This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass $M_c$ such that the solutions exist globally in time if the mass is less than $M_c$ and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.},
affiliation = {Toulouse School of Economics (GREMAQ, Université de Toulouse) 21 Allée de Brienne F-31000 Toulouse France},
author = {Blanchet, Adrien},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {chemotaxis; Keller-Segel model; nonlinear diffusion; blowup; entropy methods},
language = {eng},
pages = {1-26},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher},
url = {http://eudml.org/doc/251170},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Blanchet, Adrien
TI - On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 26
AB - This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass $M_c$ such that the solutions exist globally in time if the mass is less than $M_c$ and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.
LA - eng
KW - chemotaxis; Keller-Segel model; nonlinear diffusion; blowup; entropy methods
UR - http://eudml.org/doc/251170
ER -
References
top- L. A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2005. Zbl1145.35001MR2129498
- J. Bedrossian and Inwon Kim, Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous, preprint, 2011. Zbl1294.35172
- J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), pp. 1683–1715. Zbl1222.49038MR2793895
- A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), pp. 625–661. Zbl0916.35008MR1611136
- Idem, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), pp. 1323–1366. Zbl0978.35007MR1836532
- P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. of Math. Biol., 63 (2011), pp. 1–32. Zbl1230.92011MR2806487
- P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The -problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), pp. 1563–1583. Zbl1105.35131MR2249579
- A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), pp. 691–721. Zbl1205.65332MR2383208
- A. Blanchet, E. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, preprint, arXiv:1009.0134. Zbl1237.35155MR2876403
- A. Blanchet, J.A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), pp. 133–168. Zbl1172.35035MR2481820
- A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in , Comm. Pure Appl. Math., 61 (2008), pp. 1449–1481. Zbl1155.35100MR2436186
- A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, Journal of Mathematical Analysis and Applications, 361 (2010), pp. 533–542.. Zbl1176.35029MR2568716
- A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. (electronic). Zbl1112.35023MR2226917
- A. Blanchet and Ph. Laurençot, Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, To appear in Communications on Pure and Applied Analysis (2010). Zbl1264.35057MR2833337
- M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical Mechanisms for Chemotactic Pattern Formation by Bacteria, Biophysical Journal 74 (1998), pp. 1677–1693.
- M. Burger, Y. Dolak-Struss, and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), pp. 1–28. Zbl1165.35471MR2397995
- V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pure et Appl., 86 (2006), pp. 155–175. Zbl1116.35057MR2247456
- V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in , Commun. Math. Sci. 6 (2008), pp. 417–447. Zbl1149.35360MR2433703
- V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a non local model for spontaneous cell polarisation, arXiv:1105.4429. Zbl1248.35024
- E. Carlen and A. Figalli, Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation, preprint, arXiv:1107.5976. Zbl1307.26027
- J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19 (2003), pp. 1–48. Zbl1073.35127MR2053570
- T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
- P.H. Chavanis, Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter’s great red spot, Phys. Rev. E, 68 (2003), pp. 036108.
- P.H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, Eur. Phys. J. B, 62 (2008), pp. 179–208 . Zbl1189.35335
- P.-H. Chavanis and R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of particles, The Eur. Phys. J. B, 78 (2010), pp. 139–165. Zbl1256.82008MR2747637
- P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in dimensions, Phys. Rev. E, 69 (2004), 016116.
- S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath, 55 (1984), pp. 217–237. MR813704
- S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), pp. 217–237. Zbl0481.92010MR632161
- L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), pp. 1–29. Zbl1115.35136MR2099126
- M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81 (2002), pp. 847–875. Zbl1112.35310MR1940370
- J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in , C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611–616. Zbl1056.35076MR2103197
- J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Disc. Cont. Dynam. Systems B, 25 (2009), pp. 109–121. Zbl1180.35131MR2525170
- M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. of Math. Biol., 35 (1996), pp. 177–194. Zbl0866.92009MR1478048
- M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), pp. 583–623. Zbl0864.35008MR1415081
- T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), pp. 280–301. Zbl0998.92006MR1826309
- T. Hillen and K. Painter, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), pp. 183–217. Zbl1161.92003MR2448428
- D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103–165. Zbl1071.35001MR2013508
- Idem, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), pp. 51–69. Zbl1072.35007MR2073515
- W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824. Zbl0746.35002MR1046835
- N. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk, SIAM J. Math. Anal., 40 (2008/09), pp. 1852–1881. Zbl05607991MR2471903
- E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), pp. 399–415. Zbl1170.92306
- R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), pp. 566–588. Zbl1065.35063MR2130723
- C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), pp. 301–332. Zbl1024.35040MR1974458
- S. Luckhaus, Y. Sugiyama, J. J. L. Velázquez, Measure valued solutions of the 2D Keller-Segel system, arXiv:1011.0282. Zbl1256.35180MR2968590
- P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010), pp. 1678–1685. Zbl1236.92014
- M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. of Comp. and Appl. Math., 97 (1998), pp. 99–119. Zbl0934.35066MR1651769
- F. Merle and P. Raphaël, On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), pp. 565–672. Zbl1067.35110MR2061329
- T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), pp. 581–601. Zbl0843.92007MR1361006
- T. Nagai, T. Senba, T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J, 30 (2000), pp. 463–497. Zbl0984.35079MR1799300
- V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal of Theoretical Biology, 42 (1973), pp. 63–105.
- C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), pp. 311–338. Zbl1296.82044MR81586
- B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. Zbl1185.92006MR2270822
- D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), pp. 1697–1738. Zbl1091.35071MR2189683
- C. Sire and P.-H. Chavanis, Gravitational collapse of a Brownian gas, Banach Center Publ. 66, 287, 2004. Zbl1056.92008MR2143351
- C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E, 78 (2008), 061111. MR2546057
- Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Eq., 19 (2006), pp. 841–876. Zbl1212.35240MR2263432
- Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Diff. Eq., 12 (2007), pp. 121–144. Zbl1171.35068MR2294500
- Y. Sugiyama and J. J. L. Velázquez, Self-similar blow-up with a continuous range of values of the aggregated mass for a degenerate Keller-Segel system, Adv. Diff. Eq., 16 (2011), pp. 85–112. Zbl1221.35087MR2766895
- C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
- T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution, Adv. Diff. Eq., 14 (2009), pp. 433–476. Zbl1213.35077MR2502701
- J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., 62 (2002), pp. 1581–1633 (electronic). Zbl1013.35004MR1918569
- Idem, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223 (electronic). Zbl1058.35021MR2068667
- Idem, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1224–1248 (electronic). Zbl1058.35022MR2068668
- C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics Vol. 58, Amer. Math. Soc, Providence, 2003. Zbl1106.90001MR1964483
- M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), pp. 567–576. Zbl0527.35023MR691044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.