On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher

Adrien Blanchet[1]

  • [1] Toulouse School of Economics (GREMAQ, Université de Toulouse) 21 Allée de Brienne F-31000 Toulouse France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-26
  • ISSN: 2266-0607

Abstract

top
This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass M c such that the solutions exist globally in time if the mass is less than M c and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.

How to cite

top

Blanchet, Adrien. "On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-26. <http://eudml.org/doc/251170>.

@article{Blanchet2011-2012,
abstract = {This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass $M_c$ such that the solutions exist globally in time if the mass is less than $M_c$ and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.},
affiliation = {Toulouse School of Economics (GREMAQ, Université de Toulouse) 21 Allée de Brienne F-31000 Toulouse France},
author = {Blanchet, Adrien},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {chemotaxis; Keller-Segel model; nonlinear diffusion; blowup; entropy methods},
language = {eng},
pages = {1-26},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher},
url = {http://eudml.org/doc/251170},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Blanchet, Adrien
TI - On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 26
AB - This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass $M_c$ such that the solutions exist globally in time if the mass is less than $M_c$ and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.
LA - eng
KW - chemotaxis; Keller-Segel model; nonlinear diffusion; blowup; entropy methods
UR - http://eudml.org/doc/251170
ER -

References

top
  1. L. A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2005. Zbl1145.35001MR2129498
  2. J. Bedrossian and Inwon Kim, Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous, preprint, 2011. Zbl1294.35172
  3. J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), pp. 1683–1715. Zbl1222.49038MR2793895
  4. A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), pp. 625–661. Zbl0916.35008MR1611136
  5. Idem, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), pp. 1323–1366. Zbl0978.35007MR1836532
  6. P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. of Math. Biol., 63 (2011), pp. 1–32. Zbl1230.92011MR2806487
  7. P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8 π -problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), pp. 1563–1583. Zbl1105.35131MR2249579
  8. A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), pp. 691–721. Zbl1205.65332MR2383208
  9. A. Blanchet, E. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, preprint, arXiv:1009.0134. Zbl1237.35155MR2876403
  10. A. Blanchet, J.A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), pp. 133–168. Zbl1172.35035MR2481820
  11. A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in 2 , Comm. Pure Appl. Math., 61 (2008), pp. 1449–1481. Zbl1155.35100MR2436186
  12. A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, Journal of Mathematical Analysis and Applications, 361 (2010), pp. 533–542.. Zbl1176.35029MR2568716
  13. A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. (electronic). Zbl1112.35023MR2226917
  14. A. Blanchet and Ph. Laurençot, Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, To appear in Communications on Pure and Applied Analysis (2010). Zbl1264.35057MR2833337
  15. M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical Mechanisms for Chemotactic Pattern Formation by Bacteria, Biophysical Journal 74 (1998), pp. 1677–1693. 
  16. M. Burger, Y. Dolak-Struss, and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), pp. 1–28. Zbl1165.35471MR2397995
  17. V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pure et Appl., 86 (2006), pp. 155–175. Zbl1116.35057MR2247456
  18. V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in 2 , Commun. Math. Sci. 6 (2008), pp. 417–447. Zbl1149.35360MR2433703
  19. V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a non local model for spontaneous cell polarisation, arXiv:1105.4429. Zbl1248.35024
  20. E. Carlen and A. Figalli, Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation, preprint, arXiv:1107.5976. Zbl1307.26027
  21. J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19 (2003), pp. 1–48. Zbl1073.35127MR2053570
  22. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
  23. P.H. Chavanis, Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter’s great red spot, Phys. Rev. E, 68 (2003), pp. 036108. 
  24. P.H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, Eur. Phys. J. B, 62 (2008), pp. 179–208 . Zbl1189.35335
  25. P.-H. Chavanis and R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of N = 2 particles, The Eur. Phys. J. B, 78 (2010), pp. 139–165. Zbl1256.82008MR2747637
  26. P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions, Phys. Rev. E, 69 (2004), 016116. 
  27. S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath, 55 (1984), pp. 217–237. MR813704
  28. S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), pp. 217–237. Zbl0481.92010MR632161
  29. L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), pp. 1–29. Zbl1115.35136MR2099126
  30. M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81 (2002), pp. 847–875. Zbl1112.35310MR1940370
  31. J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in 2 , C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611–616. Zbl1056.35076MR2103197
  32. J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Disc. Cont. Dynam. Systems B, 25 (2009), pp. 109–121. Zbl1180.35131MR2525170
  33. M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. of Math. Biol., 35 (1996), pp. 177–194. Zbl0866.92009MR1478048
  34. M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), pp. 583–623. Zbl0864.35008MR1415081
  35. T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), pp. 280–301. Zbl0998.92006MR1826309
  36. T. Hillen and K. Painter, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), pp. 183–217. Zbl1161.92003MR2448428
  37. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103–165. Zbl1071.35001MR2013508
  38. Idem, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), pp. 51–69. Zbl1072.35007MR2073515
  39. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824. Zbl0746.35002MR1046835
  40. N. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk, SIAM J. Math. Anal., 40 (2008/09), pp. 1852–1881. Zbl05607991MR2471903
  41. E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), pp. 399–415. Zbl1170.92306
  42. R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), pp. 566–588. Zbl1065.35063MR2130723
  43. C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), pp. 301–332. Zbl1024.35040MR1974458
  44. S. Luckhaus, Y. Sugiyama, J. J. L. Velázquez, Measure valued solutions of the 2D Keller-Segel system, arXiv:1011.0282. Zbl1256.35180MR2968590
  45. P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010), pp. 1678–1685. Zbl1236.92014
  46. M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. of Comp. and Appl. Math., 97 (1998), pp. 99–119. Zbl0934.35066MR1651769
  47. F. Merle and P. Raphaël, On universality of blow-up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), pp. 565–672. Zbl1067.35110MR2061329
  48. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), pp. 581–601. Zbl0843.92007MR1361006
  49. T. Nagai, T. Senba, T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J, 30 (2000), pp. 463–497. Zbl0984.35079MR1799300
  50. V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal of Theoretical Biology, 42 (1973), pp. 63–105. 
  51. C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), pp. 311–338. Zbl1296.82044MR81586
  52. B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. Zbl1185.92006MR2270822
  53. D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), pp. 1697–1738. Zbl1091.35071MR2189683
  54. C. Sire and P.-H. Chavanis, Gravitational collapse of a Brownian gas, Banach Center Publ. 66, 287, 2004. Zbl1056.92008MR2143351
  55. C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E, 78 (2008), 061111. MR2546057
  56. Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Eq., 19 (2006), pp. 841–876. Zbl1212.35240MR2263432
  57. Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Diff. Eq., 12 (2007), pp. 121–144. Zbl1171.35068MR2294500
  58. Y. Sugiyama and J. J. L. Velázquez, Self-similar blow-up with a continuous range of values of the aggregated mass for a degenerate Keller-Segel system, Adv. Diff. Eq., 16 (2011), pp. 85–112. Zbl1221.35087MR2766895
  59. C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  60. T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution, Adv. Diff. Eq., 14 (2009), pp. 433–476. Zbl1213.35077MR2502701
  61. J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., 62 (2002), pp. 1581–1633 (electronic). Zbl1013.35004MR1918569
  62. Idem, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223 (electronic). Zbl1058.35021MR2068667
  63. Idem, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1224–1248 (electronic). Zbl1058.35022MR2068668
  64. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics Vol. 58, Amer. Math. Soc, Providence, 2003. Zbl1106.90001MR1964483
  65. M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), pp. 567–576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.