Global in Time Stability of Steady Shocks in Nozzles
Jeffrey Rauch[1]; Chunjing Xie[1]; Zhouping Xin[2]
- [1] Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109 USA
- [2] The Institute of Mathematical Sciences and department of mathematics The Chinese University of Hong Kong Hong Kong
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-11
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topReferences
top- Courant, R. and Friedrichs, K.O., Supersonic Flow and Shock Waves, Springer-Verlag, 1948. Zbl0365.76001MR29615
- Elling, V., Regular reflection in self-similar potential flow and the sonic criterion. Commun. Math. Anal. 8 (2010), no. 2, 22-69. Zbl1328.76038MR2569954
- Elling, V., Instability of strong regular reflection and counterexamples to the detachment criterion. SIAM J. Appl. Math. 70 (2009), no. 4, 1330-1340. Zbl05779410MR2563517
- Elling, V., Counterexamples to the sonic criterion. Arch. Ration. Mech. Anal. 194 (2009), no. 3, 987-1010. Zbl1255.76049MR2563630
- P. Embid, J. Goodman, and A. Majda,Multiple steady states for -D transonic flow, SIAM J. Sci. Statist. Comput. 5 (1984), no. 1, 21–41. Zbl0573.76055MR731879
- L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
- S.-Y. Ha, stability for systems of conservation laws with a nonresonant moving source, SIAM J. Math. Anal. 33 (2001), no. 2, 411–439. Zbl1002.35086MR1857977
- S.-Y. Ha and T. Yang, stability for systems of hyperbolic conservation laws with a resonant moving source, SIAM J. Math. Anal. 34 (2003), no. 5, 1226–1251 Zbl1036.35128MR2001667
- T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Zbl0836.47009MR1335452
- P. D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. Zbl1009.47001MR1892228
- Ta Tsien Li and Wen Ci Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series, V. Duke University, Mathematics Department, Durham, NC, 1985. Zbl0627.35001MR823237
- Wen-Ching Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (1999), no. 9, 1075–1098. Zbl0932.35142MR1692156
- Tai-Ping Liu, Transonic gas flow in a duct of varying area, Arch. Rational Mech. Anal. 80 (1982), no. 1, 1–18. Zbl0503.76076MR656799
- Tai-Ping Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (1982), no. 2, 243–260. Zbl0576.76053MR649161
- Tai-Ping Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987), no. 11, 2593–2602. Zbl0662.35068MR913412
- Tao Luo, Jeffrey Rauch, Chunjing Xie, and Zhouping Xin, Stability of transonic shock solutions for Euler-Poisson equations, Archive Rational Anal. Mech., to appear, arXiv:1008.0378.
- Andrew Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), no. 281. Zbl0517.76068MR699241
- Guy Métivier, Stability of multidimensional shocks, Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations Appl., 47, Birkhuser Boston, Boston, MA, 2001. Zbl1017.35075MR1842775
- Jeffrey Rauch, Qualitative behavior of dissipative wave equations on bounded domains, Arch. Rational Mech. Anal. 62 (1976), no. 1, 77–85. Zbl0335.35062MR404864
- Jeffrey Rauch and Frank Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. Zbl0282.35014MR340832
- Jeffrey Rauch and Michael Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79–86. Zbl0281.35012MR361461
- Zhouping Xin and Huicheng Yin, The transonic shock in a nozzle, 2-D and 3-D complete Euler systems, J. Differential Equations 245 (2008), no. 4, 1014–1085. Zbl1165.35031MR2427405