Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes
- [1] CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- page 1-20
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., 76 (1994), pp. 3–89. Zbl0839.60095MR1297873
- J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev., 108 (1957), pp. 1175–1204. Zbl0090.45401MR95694
- N. N. Bogoliubov, On a New Method in the Theory of Superconductivity, J. Exp. Theor. Phys., 34 (1958), p. 58. Zbl0090.45501
- A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), pp. 1092–1099. Zbl0151.16901MR177312
- É. Cancès, C. Le Bris, and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, vol. 53 of Collection Mathématiques et Applications, Springer, 2006. Zbl1167.81001MR2426947
- T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), pp. 549–561. Zbl0513.35007MR677997
- J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104. Zbl0322.35043MR411439
- J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), pp. 1122–1130. Zbl0299.35084MR413843
- S. Chandrasekhar, The density of white dwarf stars, Philos. Mag., 11 (1931), pp. 592–596. Zbl0001.11103
- Idem, The maximum mass of ideal white dwarfs, Astrophys. J., 74 (1931), pp. 81–82. Zbl0002.23502
- R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), pp. 315–331. Zbl0324.44005MR380244
- A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 500–545. Zbl1113.81032MR2290709
- M. J. Esteban, M. Lewin, and É. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), pp. 535–593. Zbl1288.49016MR2434346
- R. L. Frank and E. Lenzmann, On ground states for the -critical boson star equation, ArXiv e-prints, (2010).
- J. Fröhlich, B. L. G. Jonsson, and E. Lenzmann, Effective dynamics for boson stars, Nonlinearity, 20 (2007), pp. 1031–1075. Zbl1124.35084MR2312382
- J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 1691–1705. Zbl1135.35011MR2349352
- Idem, Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory, Commun. Math. Phys., 274 (2007), pp. 737–750. Zbl1130.85004MR2328910
- C. Hainzl, E. Lenzmann, M. Lewin, and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations, Ann. Henri Poincaré, 11 (2010), pp. 1023–1052. Zbl1209.85009MR2737490
- C. Hainzl and B. Schlein, Stellar collapse in the time dependent Hartree-Fock approximation, Commun. Math. Phys., 287 (2009), pp. 705–717. Zbl1175.85002MR2481756
- I. W. Herbst, Spectral theory of the operator , Commun. Math. Phys., 53 (1977), pp. 285–294. Zbl0375.35047MR436854
- T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), pp. 2815–2828. Zbl1126.35067MR2180464
- T. Kato, Perturbation theory for linear operators, Springer, second ed., 1995. Zbl0836.47009MR1335452
- E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), pp. 43–64. Zbl1171.35474MR2340532
- E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs, Duke Math. J., 152 (2010), pp. 257–315. Zbl1202.49013MR2656090
- E. Lenzmann and M. Lewin, On singularity formation for the -critical Boson star equation. 2011. Zbl1235.35231
- E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), pp. 185–194. MR452286
- E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics, 155 (1984), pp. 494–512. MR753345
- E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), pp. 147–174. Zbl0641.35065MR904142
- J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2 (50) (1958), pp. 419–432. Zbl0097.09501MR151829
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. Zbl0704.49004MR778970
- Idem, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283. Zbl0704.49004MR778974
- Idem, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1987), pp. 33–97. Zbl0618.35111MR879032
- F. Merle and P. Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), pp. 675–704. Zbl1062.35137MR2116733
- F. Merle and Y. Tsutsumi, concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), pp. 205–214. Zbl0722.35047MR1047566
- A. Michelangeli and B. Schlein, Dynamical Collapse of Boson Stars, ArXiv e-prints, (2010). Zbl1242.85007MR2909759
- H. Nawa, “Mass concentration” phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity. II, Kodai Math. J., 13 (1990), pp. 333–348. Zbl0761.35102MR1078548
- M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. Zbl0242.46001MR493420
- P. Ring and P. Schuck, The nuclear many-body problem, vol. Texts and Monographs in Physics, Springer Verlag, New York, 1980. MR611683
- E. M. Stein, Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy. Zbl0821.42001MR1232192
- W. Thirring, Bosonic black holes, Physics Letters B, 127 (1983), pp. 27 – 29.
- M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), pp. 545–565. Zbl0596.35022MR829596