Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson

N. Crouseilles; M. Mehrenberger; F. Vecil

ESAIM: Proceedings (2011)

  • Volume: 32, page 211-230
  • ISSN: 1270-900X

Abstract

top
We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.

How to cite

top

Crouseilles, N., Mehrenberger, M., and Vecil, F.. Cancès, E., et al, eds. "Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson." ESAIM: Proceedings 32 (2011): 211-230. <http://eudml.org/doc/251198>.

@article{Crouseilles2011,
abstract = {We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.},
author = {Crouseilles, N., Mehrenberger, M., Vecil, F.},
editor = {Cancès, E., Crouseilles, N., Guillard, H., Nkonga, B., Sonnendrücker, E.},
journal = {ESAIM: Proceedings},
language = {eng},
month = {11},
pages = {211-230},
publisher = {EDP Sciences},
title = {Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson},
url = {http://eudml.org/doc/251198},
volume = {32},
year = {2011},
}

TY - JOUR
AU - Crouseilles, N.
AU - Mehrenberger, M.
AU - Vecil, F.
AU - Cancès, E.
AU - Crouseilles, N.
AU - Guillard, H.
AU - Nkonga, B.
AU - Sonnendrücker, E.
TI - Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson
JO - ESAIM: Proceedings
DA - 2011/11//
PB - EDP Sciences
VL - 32
SP - 211
EP - 230
AB - We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases.
LA - eng
UR - http://eudml.org/doc/251198
ER -

NotesEmbed ?

top

You must be logged in to post comments.