On the helix equation
Mohamed Hmissi; Imene Ben Salah; Hajer Taouil
ESAIM: Proceedings (2012)
- Volume: 36, page 197-208
 - ISSN: 1270-900X
 
Access Full Article
topAbstract
topHow to cite
topHmissi, Mohamed, Ben Salah, Imene, and Taouil, Hajer. Fournier-Prunaret, D., Gardini, L., and Reich, L., eds. " On the helix equation ." ESAIM: Proceedings 36 (2012): 197-208. <http://eudml.org/doc/251284>.
@article{Hmissi2012,
	abstract = {This paper is devoted to the helices processes, i.e. the solutions
            H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω)
          of the helix equation \begin\{eqnarray\} H(0,\o)=0; \quad H(s+t,\o)= H(s,\Phi(t,\o))
                +H(t,\o)\nonumber \end\{eqnarray\} where Φ :
            ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω)
            is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation.
          For the last case, the Wiener helix plays a fundamental role. Moreover, some relations
          with the cocycle equation defined by Φ, are investigated.},
	author = {Hmissi, Mohamed, Ben Salah, Imene, Taouil, Hajer},
	editor = {Fournier-Prunaret, D., Gardini, L., Reich, L.},
	journal = {ESAIM: Proceedings},
	keywords = {translation equation; helix equation; Wiener helix; cocycle equation},
	language = {eng},
	month = {8},
	pages = {197-208},
	publisher = {EDP Sciences},
	title = { On the helix equation },
	url = {http://eudml.org/doc/251284},
	volume = {36},
	year = {2012},
}
TY  - JOUR
AU  - Hmissi, Mohamed
AU  - Ben Salah, Imene
AU  - Taouil, Hajer
AU  - Fournier-Prunaret, D.
AU  - Gardini, L.
AU  - Reich, L.
TI  -  On the helix equation 
JO  - ESAIM: Proceedings
DA  - 2012/8//
PB  - EDP Sciences
VL  - 36
SP  - 197
EP  - 208
AB  - This paper is devoted to the helices processes, i.e. the solutions
            H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω)
          of the helix equation \begin{eqnarray} H(0,\o)=0; \quad H(s+t,\o)= H(s,\Phi(t,\o))
                +H(t,\o)\nonumber \end{eqnarray} where Φ :
            ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω)
            is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation.
          For the last case, the Wiener helix plays a fundamental role. Moreover, some relations
          with the cocycle equation defined by Φ, are investigated.
LA  - eng
KW  - translation equation; helix equation; Wiener helix; cocycle equation
UR  - http://eudml.org/doc/251284
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.