# Finite volume method in curvilinear coordinates for hyperbolic conservation laws⋆

A. Bonnement; T. Fajraoui; H. Guillard; M. Martin; A. Mouton; B. Nkonga; A. Sangam

ESAIM: Proceedings (2011)

- Volume: 32, page 163-176
- ISSN: 1270-900X

## Access Full Article

top## Abstract

top## How to cite

topBonnement, A., et al. Cancès, E., et al, eds. "Finite volume method in curvilinear coordinates for hyperbolic conservation laws⋆." ESAIM: Proceedings 32 (2011): 163-176. <http://eudml.org/doc/251292>.

@article{Bonnement2011,

abstract = {This paper deals with the design of finite volume approximation of hyperbolic
conservation laws in curvilinear coordinates. Such coordinates are encountered naturally
in many problems as for instance in the analysis of a large number of models coming from
magnetic confinement fusion in tokamaks. In this paper we derive a new finite volume
method for hyperbolic conservation laws in curvilinear coordinates. The method is first
described in a general setting and then is illustrated in 2D polar coordinates. Numerical
experiments show its advantages with respect to the use of Cartesian coordinates. },

author = {Bonnement, A., Fajraoui, T., Guillard, H., Martin, M., Mouton, A., Nkonga, B., Sangam, A.},

editor = {Cancès, E., Crouseilles, N., Guillard, H., Nkonga, B., Sonnendrücker, E.},

journal = {ESAIM: Proceedings},

language = {eng},

month = {11},

pages = {163-176},

publisher = {EDP Sciences},

title = {Finite volume method in curvilinear coordinates for hyperbolic conservation laws⋆},

url = {http://eudml.org/doc/251292},

volume = {32},

year = {2011},

}

TY - JOUR

AU - Bonnement, A.

AU - Fajraoui, T.

AU - Guillard, H.

AU - Martin, M.

AU - Mouton, A.

AU - Nkonga, B.

AU - Sangam, A.

AU - Cancès, E.

AU - Crouseilles, N.

AU - Guillard, H.

AU - Nkonga, B.

AU - Sonnendrücker, E.

TI - Finite volume method in curvilinear coordinates for hyperbolic conservation laws⋆

JO - ESAIM: Proceedings

DA - 2011/11//

PB - EDP Sciences

VL - 32

SP - 163

EP - 176

AB - This paper deals with the design of finite volume approximation of hyperbolic
conservation laws in curvilinear coordinates. Such coordinates are encountered naturally
in many problems as for instance in the analysis of a large number of models coming from
magnetic confinement fusion in tokamaks. In this paper we derive a new finite volume
method for hyperbolic conservation laws in curvilinear coordinates. The method is first
described in a general setting and then is illustrated in 2D polar coordinates. Numerical
experiments show its advantages with respect to the use of Cartesian coordinates.

LA - eng

UR - http://eudml.org/doc/251292

ER -