Minimization problems with lack of compactness
Banach Center Publications (1996)
- Volume: 35, Issue: 1, page 97-107
- ISSN: 0137-6934
Access Full Article
topHow to cite
topReferences
top- [1] A. K. Ben-Naoum, C. Troestler, M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis T.M.A. 26 (1996), 823-833. Zbl0851.49004
- [2] G. Bianchi, J. Chabrowski, A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Analysis T.M.A. 25 (1995), 41-59. Zbl0823.35051
- [3] H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.
- [4] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. Zbl0526.46037
- [5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- [6] E. Lieb, Existence and uniqueness of the minimizing solutions of Choquard's nonlinear equation, Stud. Appl. Math. 57 (1977), 93-105. Zbl0369.35022
- [7] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Annales de l'Institut Henri Poincaré Analyse Non Linéaire 1 (1984) 105-145, 223-283.
- [8] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Revista Matematica Iberoamericana, 1 (1985) N°1, 145-201, N° 2, 45-120. Zbl0704.49005
- [9] M. Willem, Analyse harmonique réelle, Hermann, Paris, 1995.
- [10] M. Willem, Minimax theorems, to appear. Zbl0856.49001