On minimizing noncoercive functionals on weakly vlosed sets

Vy Le; Klaus Schmitt

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 51-72
  • ISSN: 0137-6934

Abstract

top
We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.

How to cite

top

Le, Vy, and Schmitt, Klaus. "On minimizing noncoercive functionals on weakly vlosed sets." Banach Center Publications 35.1 (1996): 51-72. <http://eudml.org/doc/251315>.

@article{Le1996,
abstract = {We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.},
author = {Le, Vy, Schmitt, Klaus},
journal = {Banach Center Publications},
keywords = {variational inequalities; P-coercive functional; semi-coercive functional; minimization of functionals; noncoercive functionals; regularization technique; semilinear elliptic problem; quasi-variational inequality},
language = {eng},
number = {1},
pages = {51-72},
title = {On minimizing noncoercive functionals on weakly vlosed sets},
url = {http://eudml.org/doc/251315},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Le, Vy
AU - Schmitt, Klaus
TI - On minimizing noncoercive functionals on weakly vlosed sets
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 51
EP - 72
AB - We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.
LA - eng
KW - variational inequalities; P-coercive functional; semi-coercive functional; minimization of functionals; noncoercive functionals; regularization technique; semilinear elliptic problem; quasi-variational inequality
UR - http://eudml.org/doc/251315
ER -

References

top
  1. [ASV1] D. D. Ang, K. Schmitt and L. K. Vy, Noncoercive variational inequalities: some applications, Nonlinear Analysis, TMA 15(1990), 497-512. Zbl0735.49007
  2. [ASV2] D. D. Ang, K. Schmitt and L. K. Vy, Variational inequalities and the contact of elastic plates, in: Differential Equations and Applications in Biology, Physics, and Engineering, Goldstein, Kappel, Schappacher (eds.), M. Dekker, N.Y., 1991,1-19. Zbl0761.35038
  3. [ASV3] D.D. Ang, K. Schmitt and L. K. Vy, P-coercive variational inequalities and unilateral problems for von Karman's equations, in: World Scientific Series in Applied Math., vol. 1, R. Agarwal (ed.), World Scientific, Singapore, 1992,15-29. Zbl0830.49011
  4. [AV] D. D. Ang and L. K. Vy, Some applications and extensions of P-coercive variational inequalities, preprint(1993). 
  5. [BGT] G. Baiocchi, F. Gastaldi and F. Tomarelli, Inéquations variationnelles non coercives, C. R. Acad. Sc. Paris 299 (1984), 647-650. 
  6. [BTW] A. Ben Naoum, C. Troestler and M. Willem, Existence and multiplicity results for homogeneous second order differential equations, J. Diff. Equations 112 (1994), 239-249. Zbl0808.58013
  7. [B] V. Brézis, Analyse Fonctionnelle, Masson, Paris 1983. 
  8. [DL] G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. Zbl0298.73001
  9. [F] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Acc. Naz. Lincei, Ser. 8 vol 7 (1964), 91-140. Zbl0146.21204
  10. [GT] F. Gastaldi and F. Tomarelli, Some remarks on nonlinear and noncoercive variational inequalities, Boll. U. M. I. (7) 1-B (1987), 143-165. Zbl0624.47053
  11. [H] P. Hess, On nonlinear mappings of monotone type with respect to Banach spaces, Ind. Univ. Math. J. 23 (1974), 645-654. Zbl0259.47051
  12. [J] R. C. James, Orthogonality and linear functionals in normed spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292. 
  13. [KS] D. Kinderlehrer and G. Stampacchia, Introduction to Variational Inequalities, Academic Press, New York, 1980. 
  14. [K] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, New York, 1964. 
  15. [LS] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519. Zbl0152.34601
  16. [LS1] V. K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject to constraints, Trans. A. M. S. 347 (1995), 4485-4513. Zbl0849.35040
  17. [LS2] V. K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject to constraints II, Advances in Diff. Eq., to appear. Zbl1020.35025
  18. [MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. Zbl0676.58017
  19. [PS] D. Pascali and J. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, Bucharest, 1978. 
  20. [PM] M. A. del Pino and R. F. Manasevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Diff. Equations 92 (1991), 226-251. Zbl0781.35017
  21. [R] T. R. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970. Zbl0193.18401
  22. [S] M. Schatzman, Problèmes aux limites non linéaires semi-coercifs, C. R. Acad. Sc. Paris 275 (1972), 1305-1308. Zbl0246.47062
  23. [St] M. Struwe, Variational Methods and their Applications in Nonlinear Partial Differential Equations, Springer, New York, 1990. 
  24. [T] S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. Zbl0214.12701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.