A sufficient condition for the existence of multiple periodic solutions of differential inclusions
Banach Center Publications (1996)
- Volume: 35, Issue: 1, page 129-138
- ISSN: 0137-6934
Access Full Article
topHow to cite
topBader, Ralf. "A sufficient condition for the existence of multiple periodic solutions of differential inclusions." Banach Center Publications 35.1 (1996): 129-138. <http://eudml.org/doc/251324>.
@article{Bader1996,
author = {Bader, Ralf},
journal = {Banach Center Publications},
keywords = {periodic solutions; differential inclusion; topological fixed point theory; boundary value problem},
language = {eng},
number = {1},
pages = {129-138},
title = {A sufficient condition for the existence of multiple periodic solutions of differential inclusions},
url = {http://eudml.org/doc/251324},
volume = {35},
year = {1996},
}
TY - JOUR
AU - Bader, Ralf
TI - A sufficient condition for the existence of multiple periodic solutions of differential inclusions
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 129
EP - 138
LA - eng
KW - periodic solutions; differential inclusion; topological fixed point theory; boundary value problem
UR - http://eudml.org/doc/251324
ER -
References
top- [1] R. Bader and W. Kryszewski, Fixed-point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR's, Set-Valued Analysis 2 (1994), 459-480. Zbl0846.55001
- [2] K. Deimling, Multivalued differential equations, de Gruyter, 1992.
- [3] J. Dugundji, Modified Vietoris theorems for homotopy, Fund. Math. 66 (1970), 223-235. Zbl0196.26801
- [4] L. Górniewicz, Topological approach to differential inclusions, in: Topological Methods in Differential Equations and Inclusions, A. Granas, M. Frigon (eds.), NATO ASI Series C 472, Kluwer Academic Publ., 1995, 129-190. Zbl0834.34022
- [5] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473. Zbl0757.54019
- [6] L. Górniewicz, P. Nistri and P. Zecca, Control problems on closed subsets of via feedback controls, Topol. Methods Nonlinear Anal., 2 (1993), 163-178. Zbl0796.93010
- [7] L. Górniewicz and S. Plaskacz, Periodic solutions of differential inclusions in , Bollettino U.M.I., (7), 7-A (1993), 409-420. Zbl0798.34018
- [8] D. M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math., 64 (1969), 91-97. Zbl0174.25804
- [9] M. A. Krasnosel'skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Springer Verlag, 1984
- [10] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-689. Zbl0421.47033
- [11] S. Plaskacz, On the solution sets for differential inclusions, Bollettino U.M.I., (7), 6-A (1992), 387-394. Zbl0774.34012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.