A new variational characterization of compact conformally flat 4-manifolds
Communications in Mathematics (2012)
- Volume: 20, Issue: 2, page 71-77
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topWu, Faen, and Zhao, Xinnuan. "A new variational characterization of compact conformally flat 4-manifolds." Communications in Mathematics 20.2 (2012): 71-77. <http://eudml.org/doc/251377>.
@article{Wu2012,
abstract = {In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^\{4\},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional \[ F(g)=\int \_\{M^\{4\}\}(aR^\{2\}+b|Ric|^\{2\})\,\mathrm \{d\}v\_\{g\}\,,\]
where \[(a,b)\in \mathbb \{R\}^\{2\}\setminus L\_\{1\}\cup L\_\{2\}\]\[L\_\{1\}\colon 3a+b=0\,;\quad L\_\{2\}\colon 6a-b+1=0\,,\]
then $(M^\{4\},g)$ is either scalar flat or a space form.},
author = {Wu, Faen, Zhao, Xinnuan},
journal = {Communications in Mathematics},
keywords = {conformally flat; 4-manifold; variational characterization; conformally flat; 4-manifold; variational characterization},
language = {eng},
number = {2},
pages = {71-77},
publisher = {University of Ostrava},
title = {A new variational characterization of compact conformally flat 4-manifolds},
url = {http://eudml.org/doc/251377},
volume = {20},
year = {2012},
}
TY - JOUR
AU - Wu, Faen
AU - Zhao, Xinnuan
TI - A new variational characterization of compact conformally flat 4-manifolds
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 71
EP - 77
AB - In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional \[ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,\]
where \[(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}\]\[L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,\]
then $(M^{4},g)$ is either scalar flat or a space form.
LA - eng
KW - conformally flat; 4-manifold; variational characterization; conformally flat; 4-manifold; variational characterization
UR - http://eudml.org/doc/251377
ER -
References
top- Berger, M., Riemannian geometry during the second half of the twentieth century, 2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI, (2000) Zbl0944.53001MR1729907
- Besse, A. L., Einstein Manifolds, 1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York, (1987) Zbl0613.53001MR0867684
- Chang, S.-Y. A., Gursky, M. J., Yang, P., 10.2307/3062131, Ann. Math., 155, 3, 2002, 709-787, (2002) MR1923964DOI10.2307/3062131
- Gursky, M. J., 10.1512/iumj.1994.43.43033, Indiana Univ. Math. J., 43, 1994, 747-774, (1994) MR1305946DOI10.1512/iumj.1994.43.43033
- Gursky, M. J., 10.1007/s002080000130, Math. Ann., 318, 3, 2000, 417-431, (2000) Zbl1034.53032MR1800764DOI10.1007/s002080000130
- Gursky, M. J., Viaclovsky, J. A., 10.1007/s002220100147, Invent. Math., 145, 2001, 251-278, (2001) Zbl1006.58008MR1872547DOI10.1007/s002220100147
- Hu, Z. J., Li, H. Z., 10.1090/S0002-9947-03-03486-X, Trans. Amer. Math. Soc., 356, 8, 2004, 3005-3023, (2004) Zbl1058.53029MR2052939DOI10.1090/S0002-9947-03-03486-X
- Lanczos, C., 10.2307/1968467, Ann. Math., 39, 4, 1938, 842-850, (1938) MR1503440DOI10.2307/1968467
- LeBrun, C., Maskit, B., 10.1007/s12220-008-9019-x, J. Georem. Anal., 18, 2, 2008, 537-564, (2008) MR2393270DOI10.1007/s12220-008-9019-x
- Reilly, R. C., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477, (1973) Zbl0277.53030MR0341351
- Rosenberg, S., 10.1090/S0002-9947-1987-0869220-4, Trans. Amer. Math. Soc., 299, 2, 1987, 535-557, (1987) Zbl0615.53033MR0869220DOI10.1090/S0002-9947-1987-0869220-4
- Schoen, R., Variation theory for the total scalar curvature functional for Riemannian metrics and related topics, Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154, (1987) MR0994021
- Wu, Faen, 10.1007/s10114-010-7470-7, Acta. Math. Sinica, 26, 10, 2010, 2003-2014, (2010) MR2718097DOI10.1007/s10114-010-7470-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.