A new variational characterization of compact conformally flat 4-manifolds

Faen Wu; Xinnuan Zhao

Communications in Mathematics (2012)

  • Volume: 20, Issue: 2, page 71-77
  • ISSN: 1804-1388

Abstract

top
In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let R and R i c denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if ( M 4 , g ) is compact and locally conformally flat and g is the critical point of the functional F ( g ) = M 4 ( a R 2 + b | R i c | 2 ) d v g , where ( a , b ) 2 L 1 L 2 L 1 : 3 a + b = 0 ; L 2 : 6 a - b + 1 = 0 , then ( M 4 , g ) is either scalar flat or a space form.

How to cite

top

Wu, Faen, and Zhao, Xinnuan. "A new variational characterization of compact conformally flat 4-manifolds." Communications in Mathematics 20.2 (2012): 71-77. <http://eudml.org/doc/251377>.

@article{Wu2012,
abstract = {In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^\{4\},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional \[ F(g)=\int \_\{M^\{4\}\}(aR^\{2\}+b|Ric|^\{2\})\,\mathrm \{d\}v\_\{g\}\,,\] where \[(a,b)\in \mathbb \{R\}^\{2\}\setminus L\_\{1\}\cup L\_\{2\}\]\[L\_\{1\}\colon 3a+b=0\,;\quad L\_\{2\}\colon 6a-b+1=0\,,\] then $(M^\{4\},g)$ is either scalar flat or a space form.},
author = {Wu, Faen, Zhao, Xinnuan},
journal = {Communications in Mathematics},
keywords = {conformally flat; 4-manifold; variational characterization; conformally flat; 4-manifold; variational characterization},
language = {eng},
number = {2},
pages = {71-77},
publisher = {University of Ostrava},
title = {A new variational characterization of compact conformally flat 4-manifolds},
url = {http://eudml.org/doc/251377},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Wu, Faen
AU - Zhao, Xinnuan
TI - A new variational characterization of compact conformally flat 4-manifolds
JO - Communications in Mathematics
PY - 2012
PB - University of Ostrava
VL - 20
IS - 2
SP - 71
EP - 77
AB - In this paper, we give a new variational characterization of certain 4-manifolds. More precisely, let $R$ and $Ric$ denote the scalar curvature and Ricci curvature respectively of a Riemannian metric, we prove that if $(M^{4},g)$ is compact and locally conformally flat and $g$ is the critical point of the functional \[ F(g)=\int _{M^{4}}(aR^{2}+b|Ric|^{2})\,\mathrm {d}v_{g}\,,\] where \[(a,b)\in \mathbb {R}^{2}\setminus L_{1}\cup L_{2}\]\[L_{1}\colon 3a+b=0\,;\quad L_{2}\colon 6a-b+1=0\,,\] then $(M^{4},g)$ is either scalar flat or a space form.
LA - eng
KW - conformally flat; 4-manifold; variational characterization; conformally flat; 4-manifold; variational characterization
UR - http://eudml.org/doc/251377
ER -

References

top
  1. Berger, M., Riemannian geometry during the second half of the twentieth century, 2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI, (2000) Zbl0944.53001MR1729907
  2. Besse, A. L., Einstein Manifolds, 1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York, (1987) Zbl0613.53001MR0867684
  3. Chang, S.-Y. A., Gursky, M. J., Yang, P., 10.2307/3062131, Ann. Math., 155, 3, 2002, 709-787, (2002) MR1923964DOI10.2307/3062131
  4. Gursky, M. J., 10.1512/iumj.1994.43.43033, Indiana Univ. Math. J., 43, 1994, 747-774, (1994) MR1305946DOI10.1512/iumj.1994.43.43033
  5. Gursky, M. J., 10.1007/s002080000130, Math. Ann., 318, 3, 2000, 417-431, (2000) Zbl1034.53032MR1800764DOI10.1007/s002080000130
  6. Gursky, M. J., Viaclovsky, J. A., 10.1007/s002220100147, Invent. Math., 145, 2001, 251-278, (2001) Zbl1006.58008MR1872547DOI10.1007/s002220100147
  7. Hu, Z. J., Li, H. Z., 10.1090/S0002-9947-03-03486-X, Trans. Amer. Math. Soc., 356, 8, 2004, 3005-3023, (2004) Zbl1058.53029MR2052939DOI10.1090/S0002-9947-03-03486-X
  8. Lanczos, C., 10.2307/1968467, Ann. Math., 39, 4, 1938, 842-850, (1938) MR1503440DOI10.2307/1968467
  9. LeBrun, C., Maskit, B., 10.1007/s12220-008-9019-x, J. Georem. Anal., 18, 2, 2008, 537-564, (2008) MR2393270DOI10.1007/s12220-008-9019-x
  10. Reilly, R. C., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477, (1973) Zbl0277.53030MR0341351
  11. Rosenberg, S., 10.1090/S0002-9947-1987-0869220-4, Trans. Amer. Math. Soc., 299, 2, 1987, 535-557, (1987) Zbl0615.53033MR0869220DOI10.1090/S0002-9947-1987-0869220-4
  12. Schoen, R., Variation theory for the total scalar curvature functional for Riemannian metrics and related topics, Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154, (1987) MR0994021
  13. Wu, Faen, 10.1007/s10114-010-7470-7, Acta. Math. Sinica, 26, 10, 2010, 2003-2014, (2010) MR2718097DOI10.1007/s10114-010-7470-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.