Novel method for generalized stability analysis of nonlinear impulsive evolution equations
JinRong Wang; Yong Zhou; Wei Wei
Kybernetika (2012)
- Volume: 48, Issue: 6, page 1211-1228
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, JinRong, Zhou, Yong, and Wei, Wei. "Novel method for generalized stability analysis of nonlinear impulsive evolution equations." Kybernetika 48.6 (2012): 1211-1228. <http://eudml.org/doc/251392>.
@article{Wang2012,
abstract = {In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results.},
author = {Wang, JinRong, Zhou, Yong, Wei, Wei},
journal = {Kybernetika},
keywords = {impulsive evolution equations; stabilization; stable manifolds; singularly perturbed problems; impulsive evolution equations; stable manifolds; singularly perturbed problems},
language = {eng},
number = {6},
pages = {1211-1228},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Novel method for generalized stability analysis of nonlinear impulsive evolution equations},
url = {http://eudml.org/doc/251392},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Wang, JinRong
AU - Zhou, Yong
AU - Wei, Wei
TI - Novel method for generalized stability analysis of nonlinear impulsive evolution equations
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1211
EP - 1228
AB - In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results.
LA - eng
KW - impulsive evolution equations; stabilization; stable manifolds; singularly perturbed problems; impulsive evolution equations; stable manifolds; singularly perturbed problems
UR - http://eudml.org/doc/251392
ER -
References
top- Abada, N., Benchohra, M., Hammouche, H., 10.1016/j.jde.2009.03.004, J. Differential Equations 246 (2009), 3834-3863. Zbl1171.34052MR2514728DOI10.1016/j.jde.2009.03.004
- Ahmed, N. U., 10.1137/S0363012901391299, SIAM J. Control Optim. 42 (2003), 669-685. MR1982287DOI10.1137/S0363012901391299
- Ahmed, N. U., Teo, K. L., Hou, S. H., 10.1016/S0362-546X(03)00117-2, Nonlinear Anal. 54 (2003), 907-925. Zbl1030.34056MR1992511DOI10.1016/S0362-546X(03)00117-2
- Benchohra, M., Henderson, J., Ntouyas, S. K., Impulsive differential equations and inclusions., In: Contemporary Mathematics and Its Applications, Vol. 2, Hindawi Publishing Corporation, New York 2006. Zbl1130.34003MR2322133
- Bounit, H., Hammouri, H., 10.1007/s002459900075, Appl. Math. Optim. 37 (1998), 225-242. Zbl1041.93553MR1489316DOI10.1007/s002459900075
- Chang, Y. K., Nieto, J. J., 10.1080/01630560902841146, Numer. Funct. Anal. Optim. 30 (2009), 227-244. Zbl1176.34096MR2514215DOI10.1080/01630560902841146
- Dvirnyĭ, A. I., Slyn'ko, V. I., Stability of solutions to impulsive differential equations in critical cases., Sibirsk. Mat. Zh. 52 (2011), 70-80. MR2810251
- Fan, Z., Li, G., 10.1016/j.jfa.2009.10.023, J. Funct. Anal. 258 (2010), 1709-1727. Zbl1193.35099MR2566317DOI10.1016/j.jfa.2009.10.023
- Hernández, E., Rabello, M., Henríquez, H. R., 10.1016/j.jmaa.2006.09.043, J. Math. Anal. Appl. 331 (2007), 1135-1158. MR2313705DOI10.1016/j.jmaa.2006.09.043
- Koliha, J. J., Straškraba, I., Stability in nonlinear evolution problems by means of fixed point theorem., Comment. Math. Univ. Carolin. 38 (1997), 37-59. MR1455469
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations., World Scientific, Singapore - London 1989. Zbl0719.34002MR1082551
- Liang, J., Liu, J. H., Xiao, T.-J., 10.1016/j.mcm.2008.05.046, Math. Comput. Model. 49 (2009), 798-804. Zbl1173.34048MR2483682DOI10.1016/j.mcm.2008.05.046
- Liu, J., Nonlinear impulsive evolution equations., Dynamic Contin. Discrete Impuls. Syst. 6 (1999), 77-85. Zbl0932.34067MR1679758
- Lü, J., Chen, G., 10.1142/S0218127406015179, Internat. J. Bifurcation and Chaos 16 (2006), 775-858. MR2234259DOI10.1142/S0218127406015179
- Lü, J., Han, F., Yu, X., Chen, G., 10.1016/j.automatica.2004.06.001, Automatica 40 (2004), 1677-1687. Zbl1162.93353MR2155461DOI10.1016/j.automatica.2004.06.001
- Wang, J., Dong, X., Zhou, Y., 10.1016/j.cnsns.2011.05.034, Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 545-554. MR2834413DOI10.1016/j.cnsns.2011.05.034
- Wang, J., Dong, X., Zhou, Y., 10.1016/j.cnsns.2011.12.002, Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 3129-3139. MR2834413DOI10.1016/j.cnsns.2011.12.002
- Wang, J., Wei, W., 10.1007/s00025-010-0057-x, Results Math. 58 (2010), 379-397. Zbl1209.34095MR2728164DOI10.1007/s00025-010-0057-x
- Wei, W., Xiang, X., Peng, Y., 10.1080/02331930500530401, Optimization 55 (2006), 141-156. MR2221729DOI10.1080/02331930500530401
- Wang, J., Xiang, X., Peng, Y., 10.1016/j.na.2009.01.139, Nonlinear Anal. 71 (2009), e1344-e1353. Zbl1238.34079MR2671921DOI10.1016/j.na.2009.01.139
- Wei, W., Hou, S., Teo, K. L., On a class of strongly nonlinear impulsive differential equation with time delay., Nonlinear Dyn. Syst. Theory 6 (2006), 281-293. Zbl1114.47067MR2264177
- Xiang, X., Wei, W., Jiang, Y., Strongly nonlinear impulsive system and necessary conditions of optimality., Dyn. Cont. Discrete Impuls. Syst. 12 (2005), 811-824. Zbl1081.49027MR2178682
- Xu, D., Yang, Z., Yang, Z., 10.1016/j.na.2006.07.043, Nonlinear Anal. 67 (2007), 1426-1439. Zbl1122.34063MR2323290DOI10.1016/j.na.2006.07.043
- Yang, T., Impulsive Control Theory., Springer-Verlag, Berlin - Heidelberg 2001. Zbl0996.93003MR1850661
- Yang, Z., Xu, D., 10.1109/TAC.2007.902748, IEEE Trans. Automat. Control 52 (2007), 1148-1154. MR2342720DOI10.1109/TAC.2007.902748
- Yu, X., Xiang, X., Wei, W., 10.1016/j.jmaa.2006.03.075, J. Math. Anal. Appl. 327 (2007), 220-232. MR2277406DOI10.1016/j.jmaa.2006.03.075
- Zhang, Y., Sun, J., 10.1016/j.jmaa.2004.07.018, J. Math. Anal. Appl. 301 (2005), 237-248. Zbl1068.34073MR2105932DOI10.1016/j.jmaa.2004.07.018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.