Full-Newton step infeasible interior-point algorithm for SDO problems
Kybernetika (2012)
- Volume: 48, Issue: 5, page 907-923
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMansouri, Hossein. "Full-Newton step infeasible interior-point algorithm for SDO problems." Kybernetika 48.5 (2012): 907-923. <http://eudml.org/doc/251417>.
@article{Mansouri2012,
abstract = {In this paper we propose a primal-dual path-following interior-point algorithm for semidefinite optimization. The algorithm constructs strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Each main step of the algorithm consists of a feasibility step and several centering steps. At each iteration, we use only full-Newton step. Moreover, we use a more natural feasibility step, which targets at the $\mu ^+$-center. The iteration bound of the algorithm coincides with the currently best iteration bound for semidefinite optimization problems.},
author = {Mansouri, Hossein},
journal = {Kybernetika},
keywords = {semidefinite optimization; infeasible interior-point method; primal-dual method; polynomial complexity; Newton-step; optimal solutions; semidefinite optimization; infeasible interior-point method; primal-dual method; polynomial complexity; Newton-step; optimal solutions},
language = {eng},
number = {5},
pages = {907-923},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Full-Newton step infeasible interior-point algorithm for SDO problems},
url = {http://eudml.org/doc/251417},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Mansouri, Hossein
TI - Full-Newton step infeasible interior-point algorithm for SDO problems
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 907
EP - 923
AB - In this paper we propose a primal-dual path-following interior-point algorithm for semidefinite optimization. The algorithm constructs strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Each main step of the algorithm consists of a feasibility step and several centering steps. At each iteration, we use only full-Newton step. Moreover, we use a more natural feasibility step, which targets at the $\mu ^+$-center. The iteration bound of the algorithm coincides with the currently best iteration bound for semidefinite optimization problems.
LA - eng
KW - semidefinite optimization; infeasible interior-point method; primal-dual method; polynomial complexity; Newton-step; optimal solutions; semidefinite optimization; infeasible interior-point method; primal-dual method; polynomial complexity; Newton-step; optimal solutions
UR - http://eudml.org/doc/251417
ER -
References
top- Alizadeh, F., 10.1137/0805002, SIAM J. Optim. 5 (2006), 13-51. Zbl0833.90087MR1315703DOI10.1137/0805002
- Helmberg, C., Semidefinite Programming for Combinatorial Optimization., Technical Report 00-34, Konrad-Zuse-Zentrum für Informationstechink Berlin 2000.
- Horn, R. A., Johnson, C. R., Topics in Matrix Analysis., Cambridge University Press, Cambridge 1991. Zbl0801.15001MR1091716
- Klerk, E. de, Aspects of Semidefinite Programming., Kluwer Academic Publishers, Dordrecht 2002. Zbl0991.90098MR2064921
- Kojima, M., Shida, M., Shindoh, S., 10.1007/BF01581723, Math. Program. 80 (1998), 129-160. MR1489167DOI10.1007/BF01581723
- Kojima, M., Megiddo, N., Noma, T., Yoshise, A., 10.1007/3-540-54509-3, Lecture Notes in Comput. Sci. 538, Springer, Berlin 1991. Zbl0745.90069MR1226025DOI10.1007/3-540-54509-3
- Luo, Z. Q., Sturm, J., Zhang, S. Z., 10.1137/S1052623496299187, SIAM J. Optim. 8 (1998), 59-81. Zbl0910.90229MR1617436DOI10.1137/S1052623496299187
- Lustig, I. J., 10.1007/BF01588785, Math. Program. 49 (1990/1991), 145-162. MR1087451DOI10.1007/BF01588785
- Lütkepohl, H., Handbook of Matrices., John Wiley & Sons, Chichester 1996. Zbl0856.15001MR1433592
- Mansouri, H., Full-Newton Step Interior-Point Methods for Conic Optimization., Ph.D. Thesis, Faculty of Mathematics and Computer Science, TU Delft, 2008.
- Mansouri, H., Roos, C., 10.1007/s11075-009-9270-7, J. Numer. Algorithms 52 (2009), 2, 225-255. Zbl1180.65079MR2563703DOI10.1007/s11075-009-9270-7
- Mansouri, H., Zangiabadi, M., New complexity analysis of full Nesterov-Todd steps for semidefinite optimization., Bull. Iranian Math. Soc. 1 (2011), 269-286. MR2850119
- Mansouri, H., Siyavash, T., Zangiabadi, M., A path-following infeasible interior-point algorithm for semidefinite programming., Iranian J. Oper. Res. 3 (2012), 1, 11-30.
- Nesterov, Y. E., Todd, M. J., 10.1287/moor.22.1.1, Math. Oper. Res. 22 (1997), 1, 1-42. Zbl0871.90064MR1436572DOI10.1287/moor.22.1.1
- Nesterov, Y. E., Todd, M. J., 10.1137/S1052623495290209, SIAM J. Optim. 8 (1998), 2, 324-364. Zbl0922.90110MR1618802DOI10.1137/S1052623495290209
- Peng, J., Roos, C., Terlaky, T., 10.1007/s101070200296, Math. Program. 93 (2002), 129-171. Zbl1007.90037MR1912271DOI10.1007/s101070200296
- Potra, F. A., Sheng, R., 10.1137/S1052623495294955, SIAM J. Optim. 8 (1998), 1007-1028. Zbl0917.65058MR1646116DOI10.1137/S1052623495294955
- Roos, C., 10.1137/050623917, SIAM J. Optim. 16 (2006), 4, 1110-1136. Zbl1131.90029MR2219135DOI10.1137/050623917
- Roos, C., Terlaky, T., Vial, J.-Ph., Theory and Algorithms for Linear Optimization. An Interior-Point Approach., John Wiley and Sons, Chichester 1997. (Second Edition Springer 2005.) Zbl0954.65041MR1450094
- Wolkowicz, H., Saigal, R., Vandenberghe, L., Handbook of Semidefinite Programming, Theory, Algorithms, and Applications., Kluwer Academic Publishers, Dordrecht 2000. Zbl0962.90001MR1778223
- Zhang, Y., 10.1137/S1052623495296115, SIAM J. Optim. 8 (1998), 365-386. Zbl0913.65050MR1618806DOI10.1137/S1052623495296115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.