Poisson–Lie sigma models on Drinfel’d double
Archivum Mathematicum (2012)
- Volume: 048, Issue: 5, page 423-447
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVysoký, Jan, and Hlavatý, Ladislav. "Poisson–Lie sigma models on Drinfel’d double." Archivum Mathematicum 048.5 (2012): 423-447. <http://eudml.org/doc/251420>.
@article{Vysoký2012,
abstract = {Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle.
The elegant form of equations of motion for so called Poisson-Lie groups is derived.
Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras. Using the adjoint representation of Lie group and Drinfel’d double we show that Poisson-Lie group can be constructed for general Lie bialgebra.},
author = {Vysoký, Jan, Hlavatý, Ladislav},
journal = {Archivum Mathematicum},
keywords = {Poisson sigma models; Poisson manifolds; Poisson-Lie groups; bundle maps; Poisson sigma model; Poisson manifold; Poisson-Lie group; bundle map},
language = {eng},
number = {5},
pages = {423-447},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Poisson–Lie sigma models on Drinfel’d double},
url = {http://eudml.org/doc/251420},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Vysoký, Jan
AU - Hlavatý, Ladislav
TI - Poisson–Lie sigma models on Drinfel’d double
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 423
EP - 447
AB - Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle.
The elegant form of equations of motion for so called Poisson-Lie groups is derived.
Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras. Using the adjoint representation of Lie group and Drinfel’d double we show that Poisson-Lie group can be constructed for general Lie bialgebra.
LA - eng
KW - Poisson sigma models; Poisson manifolds; Poisson-Lie groups; bundle maps; Poisson sigma model; Poisson manifold; Poisson-Lie group; bundle map
UR - http://eudml.org/doc/251420
ER -
References
top- Bojowald, M., Kotov, A., Strobl, T., 10.1016/j.geomphys.2004.11.002, J. Geom. Phys. 54 (2005), 400–426. (2005) Zbl1076.53102MR2144710DOI10.1016/j.geomphys.2004.11.002
- Calvo, I., Poisson sigma models on surfaces with boundary: Classical and quantum aspects, Ph.D. thesis, University of Zaragoza, 2006. (2006)
- Calvo, I., Falceto, F., García–Álvarez, D., Topological Poisson sigma models on Poisson–Lie groups, JHEP, 0310 (033), 2003. MR2030758
- Dufour, J–P., Zung, N. T., Poisson Structures and Their Normal Forms, Progr. Math., vol. 242, Birkhäuser Verlag, 2005. (2005) Zbl1082.53078MR2178041
- Klimčík, C., Yang–Baxter –models and T–Duality, JHEP, 0212 (051), 2002.
- Klimčík, C., Ševera, P., T–duality and the moment map, hep-th/9610198. Zbl0924.58132
- Klimčík, C., Ševera, P., Poisson–Lie T–duality and loops of Drinfeld doubles, Phys. Lett. B 375 (1996), 65–71. (1996)
- Lu, J., Weinstein, A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501–526. (1990) Zbl0673.58018MR1037412
- Nakahara, M., Geometry, Topology and Physics, Taylor & Francis, 2003. (2003) Zbl1090.53001MR2001829
- Schaller, P., Strobl, T., Poisson–Sigma–Models: A generalization of 2–D gravity Yang–Mills–systems, hep-th/9411163.
- Schaller, P., Strobl, T., 10.1142/S0217732394002951, Mod. Phys. Lett. A9 (1994), 3129–3136. (1994) Zbl1015.81574MR1303989DOI10.1142/S0217732394002951
- Steenrod, N., The Topology of Fibre Bundles, Princeton University Press, 1951. (1951) Zbl0054.07103MR0039258
- Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progr. Math., vol. 118, Birkhäuser Verlag, 2005. (2005) MR1269545
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.