On extremal dependence of block vectors
Helena Ferreira; Marta Ferreira
Kybernetika (2012)
- Volume: 48, Issue: 5, page 988-1006
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFerreira, Helena, and Ferreira, Marta. "On extremal dependence of block vectors." Kybernetika 48.5 (2012): 988-1006. <http://eudml.org/doc/251425>.
@article{Ferreira2012,
abstract = {Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.},
author = {Ferreira, Helena, Ferreira, Marta},
journal = {Kybernetika},
keywords = {multivariate extreme value theory; tail dependence; extremal coefficients; multivariate extreme value theory; tail dependence; extremal coefficients},
language = {eng},
number = {5},
pages = {988-1006},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On extremal dependence of block vectors},
url = {http://eudml.org/doc/251425},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Ferreira, Helena
AU - Ferreira, Marta
TI - On extremal dependence of block vectors
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 988
EP - 1006
AB - Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.
LA - eng
KW - multivariate extreme value theory; tail dependence; extremal coefficients; multivariate extreme value theory; tail dependence; extremal coefficients
UR - http://eudml.org/doc/251425
ER -
References
top- Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., Statistics of Extremes: Theory and Application., John Wiley, Chichester 2004. MR2108013
- Coles, S., Heffernan, J., Tawn, J., 10.1023/A:1009963131610, Extremes 2 (1999), 339-366. DOI10.1023/A:1009963131610
- Draisma, G., Drees, H., Ferreira, A., Haan, L. de, 10.3150/bj/1082380219, Bernoulli 10 (2004), 251-280. Zbl1058.62043MR2046774DOI10.3150/bj/1082380219
- Drees, H., Müller, P., 10.1016/j.insmatheco.2007.07.001, Insurance Math. Econom. 42 (2008), 638-650. Zbl1152.91578MR2404319DOI10.1016/j.insmatheco.2007.07.001
- Embrechts, P., Lindskog, F., McNeil, A., Modelling dependence with copulas and applications to risk management., In: Handbook of Heavy Tailed Distibutions in Finance (S. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 329-384.
- Fermanian, J. D., Radulović, D., Wegkamp, M., 10.3150/bj/1099579158, Bernoulli 10 (2004), 5, 847-860. Zbl1068.62059MR2093613DOI10.3150/bj/1099579158
- Frahm, G., 10.1016/j.spl.2006.03.006, Statist. Probab. Lett. 76 (2006), 1470-1481. Zbl1120.62035MR2245567DOI10.1016/j.spl.2006.03.006
- Frahm, G., Junker, M., Schmidt, R., 10.1016/j.insmatheco.2005.05.008, Insurance Math. Econom. 37 (2005), 1, 80-100. Zbl1101.62012MR2156598DOI10.1016/j.insmatheco.2005.05.008
- Gilat, D., Hill, T., 10.1214/aop/1176989688, Ann. Probab. 20 (1992), 1213-1221. Zbl0762.60025MR1175259DOI10.1214/aop/1176989688
- Hua, L., Joe, H., 10.1016/j.jmva.2011.05.011, J. Multivariate Anal. 102 (2011), 10, 1454-1471. Zbl1221.62079MR2819962DOI10.1016/j.jmva.2011.05.011
- Huang, X., Statistics of Bivariate Extreme Values., Ph.D. Thesis, Tinbergen Institute Research Series 22, Erasmus University Rotterdam 1992.
- Joe, H., Multivariate Models and Dependence Concepts., Chapman and Hall, London 1997. Zbl0990.62517MR1462613
- Krajina, A., An M-Estimator of Multivariate Tail Dependence., Tilburg University Press 2010.
- Ledford, A., Tawn, J., 10.1093/biomet/83.1.169, Biometrika 83 (1996), 169-187. Zbl0865.62040MR1399163DOI10.1093/biomet/83.1.169
- Ledford, A., Tawn, J., 10.1111/1467-9868.00080, J. R. Statist. Soc. Ser. B Stat. Methodol. 59 (1997), 475-499. Zbl0886.62063MR1440592DOI10.1111/1467-9868.00080
- Li, H., Tail Dependence of Multivariate Pareto Distributions., WSU Mathematics Technical Report 2006-6, Washington 2006.
- Li, H., 10.1007/s11009-007-9037-3, Methodol. Comput. Appl. Probab. 10 (2008), 1, 39-54. Zbl1142.62035MR2394034DOI10.1007/s11009-007-9037-3
- Li, H., 10.1016/j.jmva.2008.04.007, J. Multivariate Anal. 100 (2009), 1, 243-256. Zbl1151.62041MR2460490DOI10.1016/j.jmva.2008.04.007
- Li, H., Sun, Y., 10.1239/jap/1261670680, J. Appl. Probab. 46 (2009), 4, 925-937. Zbl1179.62076MR2582698DOI10.1239/jap/1261670680
- Marshall, A. W., Olkin, I., 10.1080/01621459.1967.10482885, J. Amer. Statist. Assoc. 62 (1967), 30-44. Zbl0147.38106MR0215400DOI10.1080/01621459.1967.10482885
- Nelsen, R. B., Nonparametric measures of multivariate association., In: Distribution with fixed marginals and related topics, IMS Lecture Notes - Monograph Series, Vol. 28 (L. Rüschendorf et al., eds.) Hayward, Institute of Mathematical Statistics 1996, pp. 223-232. MR1485534
- Nelsen, R. B., An Introduction to Copulas. Second edition., Springer, New York 2006. MR2197664
- Neuhaus, G., 10.1214/aoms/1177693241, Ann. Math. Statist. 42 (1971), 1285-1295. MR0293706DOI10.1214/aoms/1177693241
- Schmid, F., Schmidt, R., 10.1016/j.jmva.2006.05.005, J. Multivariate Anal. 98 (2007), 1123-1140. Zbl1116.62061MR2326243DOI10.1016/j.jmva.2006.05.005
- Schmidt, R., Stadtmüller, U., 10.1111/j.1467-9469.2005.00483.x, Scand. J. Statist. 33 (2006), 307-335. Zbl1124.62016MR2279645DOI10.1111/j.1467-9469.2005.00483.x
- Smith, R. L., Max-stable processes and spatial extremes., Preprint, Univ. North Carolina, USA 1990.
- Smith, R. L., Weissman, I., Characterization and estimation of the multivariate extremal index., Manuscript, UNC 1996.
- Sibuya, M., 10.1007/BF01682329, Ann. Inst. Statist. Math. 11 (1960), 195-210. Zbl0095.33703MR0115241DOI10.1007/BF01682329
- Oliveira, J. Tiago de, Structure theory of bivariate extremes: extensions., Est. Mat. Estat. e Econ. 7 (1962/63), 165-195.
- Wolff, E. F., N-dimensional measures of dependence., Stochastica 4 (1980), 3, 175-188. Zbl0482.62048MR0611502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.