On extremal dependence of block vectors

Helena Ferreira; Marta Ferreira

Kybernetika (2012)

  • Volume: 48, Issue: 5, page 988-1006
  • ISSN: 0023-5954

Abstract

top
Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in d -variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.

How to cite

top

Ferreira, Helena, and Ferreira, Marta. "On extremal dependence of block vectors." Kybernetika 48.5 (2012): 988-1006. <http://eudml.org/doc/251425>.

@article{Ferreira2012,
abstract = {Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.},
author = {Ferreira, Helena, Ferreira, Marta},
journal = {Kybernetika},
keywords = {multivariate extreme value theory; tail dependence; extremal coefficients; multivariate extreme value theory; tail dependence; extremal coefficients},
language = {eng},
number = {5},
pages = {988-1006},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On extremal dependence of block vectors},
url = {http://eudml.org/doc/251425},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Ferreira, Helena
AU - Ferreira, Marta
TI - On extremal dependence of block vectors
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 988
EP - 1006
AB - Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to assess the amount of dependence in $d$-variate random vectors based on bidimensional techniques. Simple estimators will be stated and can be applied to the well-known stable tail dependence function. Asymptotic normality and strong consistency will be derived too. An application to financial markets will be presented at the end.
LA - eng
KW - multivariate extreme value theory; tail dependence; extremal coefficients; multivariate extreme value theory; tail dependence; extremal coefficients
UR - http://eudml.org/doc/251425
ER -

References

top
  1. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., Statistics of Extremes: Theory and Application., John Wiley, Chichester 2004. MR2108013
  2. Coles, S., Heffernan, J., Tawn, J., 10.1023/A:1009963131610, Extremes 2 (1999), 339-366. DOI10.1023/A:1009963131610
  3. Draisma, G., Drees, H., Ferreira, A., Haan, L. de, 10.3150/bj/1082380219, Bernoulli 10 (2004), 251-280. Zbl1058.62043MR2046774DOI10.3150/bj/1082380219
  4. Drees, H., Müller, P., 10.1016/j.insmatheco.2007.07.001, Insurance Math. Econom. 42 (2008), 638-650. Zbl1152.91578MR2404319DOI10.1016/j.insmatheco.2007.07.001
  5. Embrechts, P., Lindskog, F., McNeil, A., Modelling dependence with copulas and applications to risk management., In: Handbook of Heavy Tailed Distibutions in Finance (S. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 329-384. 
  6. Fermanian, J. D., Radulović, D., Wegkamp, M., 10.3150/bj/1099579158, Bernoulli 10 (2004), 5, 847-860. Zbl1068.62059MR2093613DOI10.3150/bj/1099579158
  7. Frahm, G., 10.1016/j.spl.2006.03.006, Statist. Probab. Lett. 76 (2006), 1470-1481. Zbl1120.62035MR2245567DOI10.1016/j.spl.2006.03.006
  8. Frahm, G., Junker, M., Schmidt, R., 10.1016/j.insmatheco.2005.05.008, Insurance Math. Econom. 37 (2005), 1, 80-100. Zbl1101.62012MR2156598DOI10.1016/j.insmatheco.2005.05.008
  9. Gilat, D., Hill, T., 10.1214/aop/1176989688, Ann. Probab. 20 (1992), 1213-1221. Zbl0762.60025MR1175259DOI10.1214/aop/1176989688
  10. Hua, L., Joe, H., 10.1016/j.jmva.2011.05.011, J. Multivariate Anal. 102 (2011), 10, 1454-1471. Zbl1221.62079MR2819962DOI10.1016/j.jmva.2011.05.011
  11. Huang, X., Statistics of Bivariate Extreme Values., Ph.D. Thesis, Tinbergen Institute Research Series 22, Erasmus University Rotterdam 1992. 
  12. Joe, H., Multivariate Models and Dependence Concepts., Chapman and Hall, London 1997. Zbl0990.62517MR1462613
  13. Krajina, A., An M-Estimator of Multivariate Tail Dependence., Tilburg University Press 2010. 
  14. Ledford, A., Tawn, J., 10.1093/biomet/83.1.169, Biometrika 83 (1996), 169-187. Zbl0865.62040MR1399163DOI10.1093/biomet/83.1.169
  15. Ledford, A., Tawn, J., 10.1111/1467-9868.00080, J. R. Statist. Soc. Ser. B Stat. Methodol. 59 (1997), 475-499. Zbl0886.62063MR1440592DOI10.1111/1467-9868.00080
  16. Li, H., Tail Dependence of Multivariate Pareto Distributions., WSU Mathematics Technical Report 2006-6, Washington 2006. 
  17. Li, H., 10.1007/s11009-007-9037-3, Methodol. Comput. Appl. Probab. 10 (2008), 1, 39-54. Zbl1142.62035MR2394034DOI10.1007/s11009-007-9037-3
  18. Li, H., 10.1016/j.jmva.2008.04.007, J. Multivariate Anal. 100 (2009), 1, 243-256. Zbl1151.62041MR2460490DOI10.1016/j.jmva.2008.04.007
  19. Li, H., Sun, Y., 10.1239/jap/1261670680, J. Appl. Probab. 46 (2009), 4, 925-937. Zbl1179.62076MR2582698DOI10.1239/jap/1261670680
  20. Marshall, A. W., Olkin, I., 10.1080/01621459.1967.10482885, J. Amer. Statist. Assoc. 62 (1967), 30-44. Zbl0147.38106MR0215400DOI10.1080/01621459.1967.10482885
  21. Nelsen, R. B., Nonparametric measures of multivariate association., In: Distribution with fixed marginals and related topics, IMS Lecture Notes - Monograph Series, Vol. 28 (L. Rüschendorf et al., eds.) Hayward, Institute of Mathematical Statistics 1996, pp. 223-232. MR1485534
  22. Nelsen, R. B., An Introduction to Copulas. Second edition., Springer, New York 2006. MR2197664
  23. Neuhaus, G., 10.1214/aoms/1177693241, Ann. Math. Statist. 42 (1971), 1285-1295. MR0293706DOI10.1214/aoms/1177693241
  24. Schmid, F., Schmidt, R., 10.1016/j.jmva.2006.05.005, J. Multivariate Anal. 98 (2007), 1123-1140. Zbl1116.62061MR2326243DOI10.1016/j.jmva.2006.05.005
  25. Schmidt, R., Stadtmüller, U., 10.1111/j.1467-9469.2005.00483.x, Scand. J. Statist. 33 (2006), 307-335. Zbl1124.62016MR2279645DOI10.1111/j.1467-9469.2005.00483.x
  26. Smith, R. L., Max-stable processes and spatial extremes., Preprint, Univ. North Carolina, USA 1990. 
  27. Smith, R. L., Weissman, I., Characterization and estimation of the multivariate extremal index., Manuscript, UNC 1996. 
  28. Sibuya, M., 10.1007/BF01682329, Ann. Inst. Statist. Math. 11 (1960), 195-210. Zbl0095.33703MR0115241DOI10.1007/BF01682329
  29. Oliveira, J. Tiago de, Structure theory of bivariate extremes: extensions., Est. Mat. Estat. e Econ. 7 (1962/63), 165-195. 
  30. Wolff, E. F., N-dimensional measures of dependence., Stochastica 4 (1980), 3, 175-188. Zbl0482.62048MR0611502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.